ONLINE APPENDIX FOR "LANDSCAPE CHANGE AND TRADE IN ANCIENT GREECE: EVIDENCE FROM POLLEN DATA"

Adam Izdebski Tymon Słoczyński Anton Bonnier Grzegorz Koloch Katerina Kouli

DECEMBER 11, 2019

Appendices

Α	Data	2
В	Empirical Results	7
C	Mediterranean Shipwrecks	9
D	Oil and Wine Presses	11
Ε	Evidence on Comparative Advantage	12
F	Distance to the Black Sea	15

Appendix A Data

Our data set contains information about pollen proportions attributable to twenty-three different plant taxa. Table A1 reports the conventional names of these taxa, as used in palynology, and their English translations. For ease of interpretation, Table A1 also classifies the plant taxa into five broad categories: primary anthropogenic indicators, secondary anthropogenic indicators, open vegetation, deciduous trees, and evergreen trees.

In Izdebski *et al.* (2019), we focus exclusively on (*i*) cereals, olive, and vine, which all belong to primary anthropogenic indicators; and (*ii*) the summary indicators for grasses and the two types of forest dominant in southern Greece—coniferous, which consists of pine and fir, and deciduous, which consists of alder, hazel, hornbeam, and deciduous oak. Figure B2 in online Appendix B shows our trend estimates for the remaining primary anthropogenic indicators as well as for all secondary anthropogenic indicators available in our data. For clarity, we now briefly discuss the concept of secondary anthropogenic indicators that are available in our data.

Secondary anthropogenic indicators, or synanthropic plant taxa, are plants—such as weeds of cereal fields and pastures—that thrive in ecosystems created by human agriculture despite not being actually cultivated (Behre, 1981; Bottema and Woldring, 1990).

As reported in Table A1, our data set contains information about four secondary anthropogenic indicators: Cichorieae, ribwort plantain, sorrel, and salad burnet. These plant taxa are regarded as human impact indicators in the Mediterranean ecosystems and are also referred to as wild synanthropic plants. They are weeds and ruderals, growing within farming contexts and on open disturbed ground, as they are involuntarily favoured by the spread of agricultural activities. These herbs are useful for reconstructing the dynamics of past and present anthropic ecosystems (see, *e.g.*, Kouli *et al.*, 2018).

Cichorieae are herbs belonging to the family of Asteroideae, including lettuce, chicory, dandelion, and salsify. The pollen of Cichorieae is abundant in pasture land and is linked to herbivore action and animal browsing leading to a certain selection of plants. Thus, palaeoecological studies in the Mediterranean consider the pollen of Cichorieae as one of the most important pastureland or grazing indicators (see, *e.g.*, Florenzano *et al.*, 2015).

Ribwort plantain (*Plantago lanceolata*) is a common weed of cultivated land. Sorrel (*Rumex acetosa*) is a perennial herb common in grasslands. Salad burnet (*Sanguisorba minor* or *Sarcopoterium*) is a perennial and drought-tolerant herb that is typically found in dry limestone-soil meadows. These plants are apophytes as described above, growing on disturbed land, while salad burnet is also one of the indicators used for pastoralism in the Mediterranean (see, *e.g.*, Bottema and Woldring, 1990; Eastwood *et al.*, 1999).

Tabl	e Al: Plant Taxa			
Conventional name	English translation			
Primary an	thropogenic indicators			
Cerealia-type	cereals			
Olea	olive			
Vitis	vine			
Castanea	chestnut			
Juglans	walnut			
Secondary as	nthropogenic indicators			
Cichorieae	a plant tribe incl. lettuce, chicory, dandelion, and salsify			
Plantago lanceolata type	ribwort plantain			
<i>Rumex acetosa</i> type	sorrel			
Sanguisorba minor	salad burnet			
Open vegetation				
Artemisia	a plant genus incl. mugwort, wormwood, and sagebrush			
Chenopodiaceae	a plant family, also called the goosefoot family			
Cyperaceae	sedges			
Poaceae	grasses			
De	eciduous trees			
Alnus	alder			
Carpinus betulus	common hornbeam			
Corylus	hazel			
Fagus	beech			
Fraxinus ornus	manna ash			
Quercus robur type	deciduous oak			
Ev	vergreen trees			
Abies	fir			
Juniperus	juniper			
Pinus	pine			
<i>Quercus ilex</i> type	evergreen oak			

Table A1: *Plant Taxa*

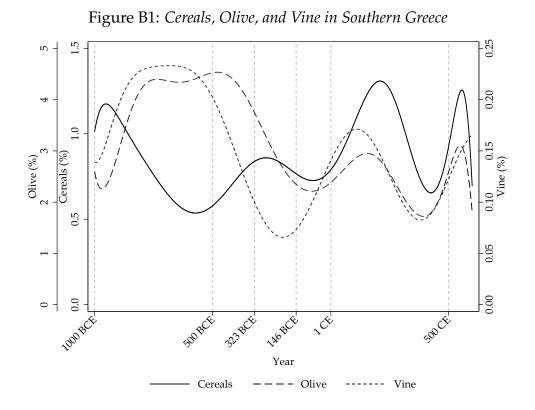
Table A2: Further Information About Pollen Sites in Southern Greece

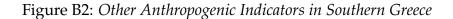
ID	Site name Latitude Longitude Original public		Original publication	Age-depth model	
1	Vravron	37.924979	24.000511	Kouli (2012)	Triantaphyllou <i>et al.</i> (2010), Weiberg <i>et al.</i> (2016)
2	Elefsina	38.006857	23.459553	Kyrikou <i>et al.</i> (2019)	Kyrikou <i>et al.</i> (2019)
3	Lerna	37.579213	22.72825	Jahns (1993)	Izdebski et al. (2015)
4	Kotychi	38.000171	21.302356	Lazarova et al. (2012)	Weiberg <i>et al.</i> (2016)
5	Voulkaria	38.875204	20.833328	Jahns (2005)	Izdebski et al. (2015)
6	Halos	39.16667	22.83333	Bottema (1988)	Izdebski et al. (2015)

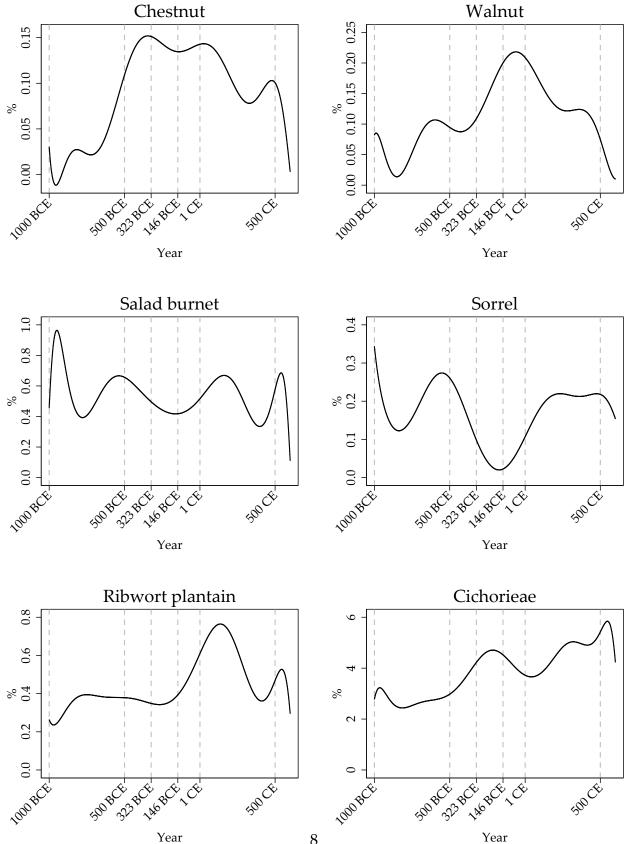
Notes: Site identifiers correspond to those in Figure 1 and Table 2 in Izdebski et al. (2019).

•.		1	1.	•	1	1 ·	
site	year	cereals	olive	vine	chestnut	walnut	•••
Vravron	1069 BCE	5.1990	1.5290	0.3058	n/a	0	•••
Vravron	971 BCE	3.8340	0.6390	0	n/a	0	•••
Vravron	872 BCE	1.0310	6.5290	0.3436	n/a	0	•••
Vravron	774 BCE	0.2387	5.9670	0	n/a	0	•••
Vravron	676 BCE	0.9434	6.6040	0.3145	n/a	0	•••
Vravron	578 BCE	0.4357	4.1390	0	n/a	0.2179	•••
Vravron	479 BCE	0.2786	5.8500	0.2786	n/a	0	•••
Vravron	381 BCE	0.3521	9.5070	0.3521	n/a	0.3521	•••
Vravron	283 BCE	0.3268	1.6340	0	n/a	0.3268	•••
Vravron	185 BCE	0.9646	1.2860	0	n/a	0.6431	•••
Vravron	86 BCE	0.6098	0.6098	0	n/a	1.2200	•••
Vravron	37 BCE	0.2288	1.1440	0.2288	n/a	0.4577	•••
Vravron	61 CE	0.5882	1.1760	0	n/a	1.4710	•••
Vravron	110 CE	0.4545	0.9091	0.2273	n/a	0.6818	•••
Vravron	209 CE	0.7895	0.7895	0	n/a	0.2632	•••
Vravron	307 CE	0.8475	0.8475	0	n/a	0	•••
Vravron	405 CE	0.4587	0.6881	0	n/a	0	•••
Vravron	503 CE	0.2252	0.6757	0	n/a	0	•••
Vravron	730 CE	3.2000	3.0000	0.2000	n/a	0	
•••		•••	•••			•••	•••

Table A3: Snippet of Our Data Set

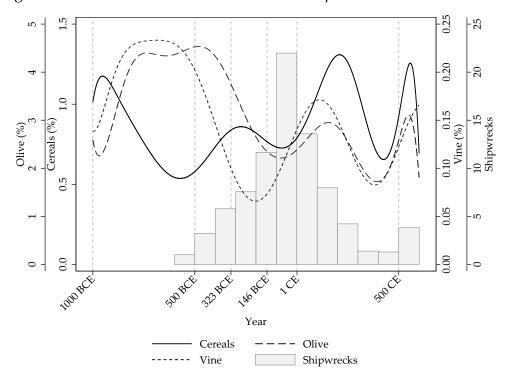

Notes: All variables are measured in percentages, relative to the pollen sum. The pollen sum includes trees, shrubs, and herbs, unless the original investigator of a given site recommended exclusion of some taxa from the total sum (see also Izdebski *et al.*, 2019). The data on chestnut are not available at the pollen sites of Vravron and Elefsina.


	No. of obs.	Mean	Std. dev.	Median
cereals	115	1.09	1.29	0.60
olive	115	4.86	3.64	4.57
vine	115	0.19	0.25	0.17
chestnut	73	0.05	0.10	0
walnut	115	0.15	0.26	0
Cichorieae	115	4.08	4.27	3.04
ribwort plantain	115	0.45	0.58	0.30
sorrel	74	0.20	0.30	0
salad burnet	115	0.70	1.06	0.33
Artemisia	115	0.67	0.66	0.56
Chenopodiaceae	115	4.00	7.91	1.19
sedges	115	5.66	12.94	0.90
grasses	115	5.41	3.51	5.12
alder	101	0.70	0.61	0.64
common hornbeam	115	0.74	0.92	0.35
hazel	115	0.36	0.38	0.25
beech	92	0.36	0.36	0.27
manna ash	115	1.95	4.07	0.37
deciduous oak	104	4.02	2.63	3.63
fir	115	2.30	5.17	0.52
juniper	115	0.25	0.49	0.11
pine	115	19.89	24.92	4.90
evergreen oak	104	29.48	19.79	26.50


Table A4: Summary Statistics

Notes: All variables are measured in percentages, relative to the pollen sum. The pollen sum includes trees, shrubs, and herbs, unless the original investigator of a given site recommended exclusion of some taxa from the total sum (see also Izdebski *et al.*, 2019).

Appendix B Empirical Results


Appendix C Mediterranean Shipwrecks

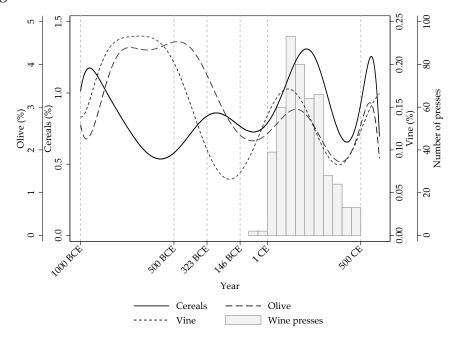
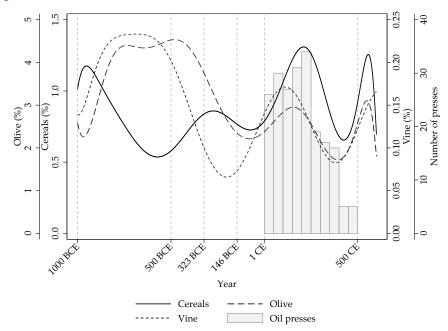
As a robustness check, we consider the recent criticism of shipwreck-based studies by Wilson (2011) and McCormick (2012), who noted that many shipwrecks had been dated very imprecisely—with differences of several centuries between the earliest and the latest possible date of sinking—which might affect our conclusions from analysing these data. Thus, McCormick (2012) recommended that we restrict our attention to shipwrecks that could be dated down to three centuries or less; he also suggested, as did Wilson (2011), that we prorate shipwrecks dated to multiple centuries. For example, a shipwreck dating between 50 and 250 CE would be coded as 1/4 of a shipwreck in the 1st century, 1/2 in the 2nd century, and 1/4 in the 3rd century CE. See also McCormick (2016) for a further discussion of methodological issues in shipwreck-based studies.

We implement both of these recommendations in Figure C1, which is a revised version of Figure 4 in Izdebski *et al.* (2019). The main difference between both figures is in the dating of the biggest economic boom. Using prorated data, the greatest number of shipwrecks appears to be dated to the 1st century BCE and—to a lesser extent—the 1st century CE. Consequently, there is a gap of *c.* 100–200 years between the estimated peak of the economic expansion according to the pollen and shipwreck data. On the other hand, the remaining similarities between both sources of data—a decline in the 4th and 5th century CE and a smaller boom in the 6th century CE—are robust to prorating. As before, both sources of data suggest different pictures of pre-Roman trade, and we are inclined to trust the pollen-based estimates.

Finally, we revisit the calculations reported in footnote 13 in Izdebski *et al.* (2019). We match the prorated number of shipwrecks in each century with our trend estimates for the midpoint of this century. Unsurprisingly, when we focus on the period from the 1st century BCE onward, the correlations become much lower than before; they are now equal to -0.2802, 0.0985, and 0.2774 for cereals, olive, and vine, respectively. However, if instead we focus on the period from the 1st century CE onward—dropping a single outlier—these values increase to 0.1684, 0.4904, and 0.8000, respectively.

Figure C1: Pollen Data in Southern Greece vs Shipwrecks in Greece (Prorated)

Appendix D Oil and Wine Presses

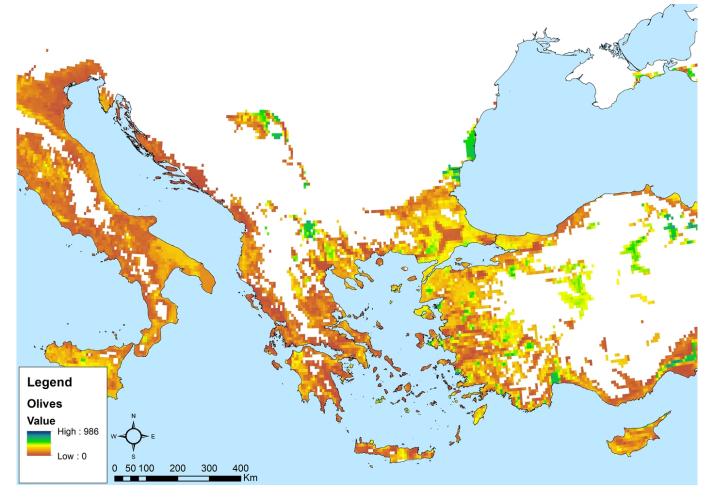

Figure D1: Pollen Data in Southern Greece vs Mediterranean Wine Presses

Figure D2: Pollen Data in Southern Greece vs Mediterranean Oil Presses

Appendix E Evidence on Comparative Advantage

Figure E1: Suitability for Cultivating Olive in the North-Eastern Mediterranean

Notes: The map shows micro-level information on the total production capacity (t/ha) for low input level rain-fed olive in the north-eastern Mediterranean. The data come from the Food and Agriculture Organization (FAO)'s Global Agro-Ecological Zones (GAEZ) project (FAO/IIASA, 2011). We use data for the baseline period 1961–1990 without CO2 fertilization.

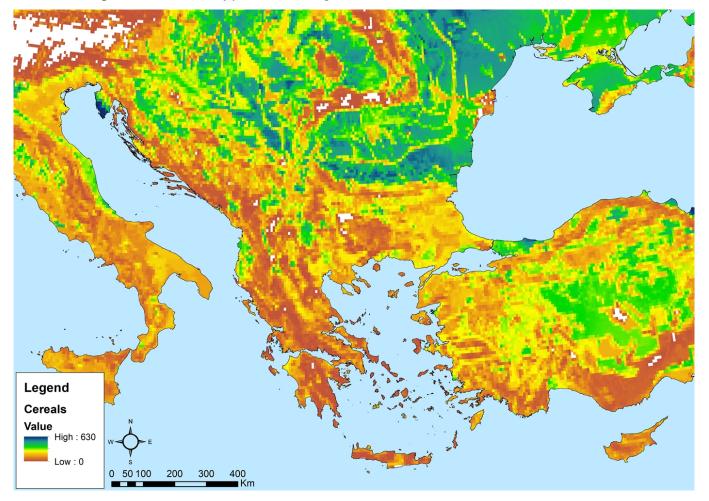
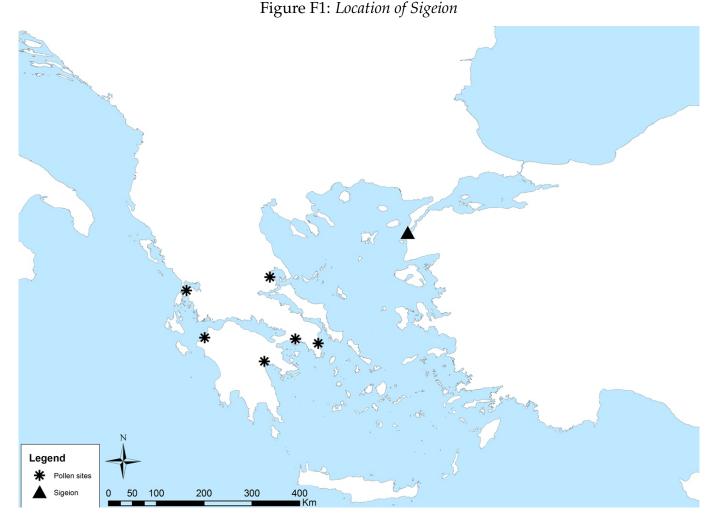


Figure E2: Suitability for Cultivating Cereals in the North-Eastern Mediterranean


Notes: The map shows micro-level information on the total production capacity (t/ha) for low input level rain-fed cereals in the north-eastern Mediterranean. The data come from the Food and Agriculture Organization (FAO)'s Global Agro-Ecological Zones (GAEZ) project (FAO/IIASA, 2011). We use data for the baseline period 1961–1990 without CO2 fertilization.

	Mean Std. dev. Pollen sites Std. dev. 37.924979 24.000511 179.93 94.14 38.006857 23.459553 138.45 96.49 38.000857 23.459553 138.45 96.49 37.579213 22.72825 76.55 72.17 38.000171 21.302356 198.79 137.30 38.875204 20.833328 78.67 67.96 39.16667 22.83333 121.54 67.15 39.16667 22.83333 121.54 67.15 Possible colonization targets and trading areas 132.32	Pollen sites Pollen sites 24.000511 23.459553 1 23.459553 1 22.72825 7 22.733326 1 20.833328 1	Mean es 179.93 138.45 76.55 198.79 78.67 121.54 132.32	Std. dev. 94.14 96.49 72.17	Mean	Std. dev.	
Greece Greece Greece Greece Greece Greece France Italy Italy Italy Italy Italy Italy Italy	37.924979 38.006857 37.579213 38.000171 38.875204 39.16667 39.16667	Pollen sit 24.000511 23.459553 22.72825 22.72825 21.302356 20.833328 22.83333	es 179.93 138.45 76.55 198.79 78.67 121.54 132.32	94.14 96.49 72.17	75 77 71		
Greece Greece Greece Greece Greece Greece France Italy Italy Italy Italy Italy Italy Italy	37.924979 38.006857 37.579213 38.000171 38.875204 39.16667 39.16667	24.000511 23.459553 22.72825 21.302356 21.302356 20.833328 22.83333	179.93 138.45 76.55 198.79 78.67 121.54 132.32	94.14 96.49 72.17	עם פע		
Greece Greece Greece Greece Greece France Italy Italy Italy Italy Italy Italy Italy Italy	38.006857 37.579213 38.000171 38.875204 39.16667 39.16667	23.459553 22.72825 21.302356 20.833328 22.83333	138.45 76.55 198.79 78.67 121.54 132.32	96.49 72.17	40.00	37.59	2.733
Greece Greece Greece Greece France Italy Italy Italy Italy Italy Italy Italy Italy	37.579213 38.000171 38.875204 39.16667 39.16667	22.72825 21.302356 20.833328 22.83333	76.55 198.79 78.67 121.54 132.32	72.17	65.37	44.57	2.118
Greece Greece Greece France Italy Italy Italy Italy Italy Italy Italy Italy	38.000171 38.875204 39.16667 3ssible coloni	21.302356 20.833328 22.83333	198.79 78.67 121.54 132.32		44.51	43.35	1.720
Greece Greece France Tunisia Italy Italy Italy Italy Libya	38.875204 39.16667 ossible coloni	20.833328 22.83333	78.67 121.54 132.32	137.30	137.08	40.66	1.450
Greece France Tunisia Italy Italy Italy Italy Libya	39.16667 ossible coloni	22.83333	121.54 132.32	67.96	61.42	39.59	1.281
France Tunisia Italy Italy (Sicily) Italy Libya	ossible coloni	100404 00 Hor	132.32	67.15	72.92	39.55	1.667
France Tunisia Italy Italy Italy Libya	ossible coloni	want we then			74.52		
		Zauon laige	ts and tra	ıding area	S		
	43.2964	5.37	137.67	67.98	135.92	52.17	1.013
	36.853056	10.323056	205.18	100.40	136.63	26.77	1.502
	40.848611	14.053611	101.30	38.42	101.97	49.67	0.993
	37.083333	15.283333	184.96	54.35	91.37	34.56	2.024
	40.383333	16.824444	169.21	45.54	127.49	28.91	1.327
	32.825	21.858056	277.71	117.82	106.54	51.11	2.607
Byzantion Turkey	41.013889	28.955556	188.63	113.93	164.27	90.23	1.148
Chersonesus Ukraine (Crimea)	44.611667	33.493333	0	0	334.75	79.36	0
Tyre Lebanon	33.271944	35.194444	230.80	61.98	104.47	33.18	2.209
Mean			166.16		144.82		
<i>Notes:</i> The table presents information on six pollen sites, as in Figure 1 and Table 2 in Izdebski <i>et al.</i> (2019), and nine comparison locations across the Mediterranean. Summary statistics for olive and cereal suitability are based on micro-level information on the total production connective (t./ha) for low input level rain-fed olive and cereals. The date come from the Food and Acriculture Orcanization (FAOVs Clobal Acro-	pollen sites, as tor olive and to and coreals	in Figure 1 ar cereal suitabi The data come	nd Table 2 lity are bas from the F	in Izdebski sed on micr	et al. (2019 o-level inf)), and nine of ormation on broadization (comparison location: the total production FAOVs Clobal A area

11
B
H
ä
7
\tilde{c}
1
'a
ų,
\triangleleft
is the l
4
+
ŝ
3
E.
7
4
ls Across
al
ē
5
Ŭ
l Cerea
ğ
EN I
a
0)
~
iv
live
Oliva
g Oliv
ng Oliv
ting Oliv
ating Oliv
vating Olivo
i'n
ultivating Oliv
Cultivating Olive
Cultivating Oliv
r Cult
or Cult
or Cult
or Cult
or Cult
or Cult
or Cult
or Cult
or Cult
or Cult
or Cult
or Cult
or Cult
or Cult
or Cult
r Cult

Appendix F Distance to the Black Sea

Sigeion was an ancient Greek city-state located on the Aegean shore of Anatolia, close to the modern village of Kumkale and a few kilometres to the northwest of the legendary city of Troy. Sigeion marks the entrance to the Dardanelles, when coming from the Aegean Sea. Sigeion existed from the 8th/7th century BCE, when it was founded by Greek colonists, until *c*. 1st century BCE. However, the name continued to be used throughout the Roman period, and thus it represents the entry point to the Dardanelles in the ORBIS model. For more information on Sigeion, see Schwertheim (2008). The location of Sigeion is also presented in Figure F1.

Notes: The map shows the location of six pollen sites, as in Figure 1 and Table 2 in Izdebski *et al.* (2019), and the location of the city of Sigeion (39.992624, 26.186336).

Pollen site (<i>a</i>)	ORBIS site (b)	Latitude of <i>b</i>	Longitude of <i>b</i>	Distance from <i>a</i> to <i>b</i>	Distance from <i>a</i> to Sigeion	Trade cost from <i>b</i> to Sigeion
Vravron	Sounion Pr.	37.6544	24.01714	30	297	0.53
Elefsina	Eleusis	38.03251	23.54241	8	323	0.57
Lerna	Skyllaion Pr.	37.43339	23.51855	72	402	0.69
Kotychi	Patrae	38.25267	21.73379	47	476	1.08
Voulkaria	Leucas	38.83589	20.71275	11	476	1.11
Halos	Demetrias	39.2929	22.90537	15	301	0.61

Table F1: Distances and Trade Costs from Southern Greece to Sigeion

Notes: The table presents information on six pollen sites (*a*), as in Figure 1 and Table 2 in Izdebski *et al.* (2019), and the nearest coastal destination points (*b*) in the Stanford Geospatial Network Model of the Roman World (ORBIS). Distances from *a* to *b* and from *a* to Sigeion are the great circle distances and are reported in kilometres. They were calculated using the Latitude/Longitude Distance Calculator, provided by the National Hurricane Center (NHC) and the Central Pacific Hurricane Center (CPHC) of the U.S. National Weather Service. Trade costs from *b* to Sigeion are the transport costs of one kilogram of wheat in July and are reported in denarii. They were calculated using ORBIS. We used the following settings in the ORBIS model: summer (season of departure); cheapest (priority); road, river, coastal sea, open sea (network mode); donkey on road, civilian boat on the river, slow sea (mode); and zero transfer costs. The correlation between the distance from *a* to Sigeion and the trade cost from *b* to Sigeion is 0.9531. The Latitude/Longitude Distance Calculator can be accessed at http://www.nhc.noaa.gov/gccalc.shtml. ORBIS can be accessed at http://orbis.stanford.edu/.

References

- Behre, K.E. (1981). 'The interpretation of anthropogenic indicators in pollen diagrams', *Pollen et Spores*, vol. 23(2), pp. 225–245.
- Bottema, S. (1988). 'A reconstruction of the Halos environment on the basis of palynological information', in (H. R. Reinders, ed.), *New Halos: A Hellenistic Town in Thessalía, Greece*, pp. 216–226, Utrecht: HES.
- Bottema, S. and Woldring, H. (1990). 'Anthropogenic indicators in the pollen record of the eastern Mediterranean', in (S. Bottema, G. Entjes-Nieborg and W. van Zeist, eds.), *Man's Role in the Shaping of the Eastern Mediterranean Landscape*, pp. 231–264, Rotterdam and Brookfield: A. A. Balkema.
- Eastwood, W.J., Roberts, N., Lamb, H.F. and Tibby, J.C. (1999). 'Holocene environmental change in southwest Turkey: A palaeoecological record of lake and catchment-related changes', *Quaternary Science Reviews*, vol. 18, pp. 671–695.
- FAO/IIASA (2011). 'Global Agro-ecological Zones (GAEZ v3.0)', FAO Rome, Italy and IIASA, Laxenburg, Austria.
- Florenzano, A., Marignani, M., Rosati, L., Fascetti, S. and Mercuri, A.M. (2015). 'Are Cichorieae an indicator of open habitats and pastoralism in current and past vegetation studies?', *Plant Biosystems*, vol. 149(1), pp. 154–165.
- Izdebski, A., Koloch, G. and Słoczyński, T. (2015). 'Exploring Byzantine and Ottoman economic history with the use of palynological data: A quantitative approach', *Jahrbuch der Österreichischen Byzantinistik*, vol. 65, pp. 67–110.
- Izdebski, A., Słoczyński, T., Bonnier, A., Koloch, G. and Kouli, K. (2019). 'Landscape change and trade in ancient Greece: Evidence from pollen data', unpublished.
- Jahns, S. (1993). 'On the Holocene vegetation history of the Argive Plain (Peloponnese, southern Greece)', *Vegetation History and Archaeobotany*, vol. 2(4), pp. 187–203.
- Jahns, S. (2005). 'The Holocene history of vegetation and settlement at the coastal site of Lake Voulkaria in Acarnania, western Greece', *Vegetation History and Archaeobotany*, vol. 14(1), pp. 55–66.
- Kouli, K. (2012). 'Vegetation development and human activities in Attiki (SE Greece) during the last 5,000 years', *Vegetation History and Archaeobotany*, vol. 21(4–5), pp. 267–278.
- Kouli, K., Masi, A., Mercuri, A.M., Florenzano, A. and Sadori, L. (2018). 'Regional vegetation histories: An overview of the pollen evidence from the central Mediterranean', *Late Antique Archaeology*, vol. 11, pp. 69–82.
- Kyrikou, S., Kouli, K., Triantaphyllou, M.V., Dimiza, M.D., Gogou, A., Panagiotopoulos, I.P., Anagnostou, C. and Karageorgis, A.P. (2019). 'Late Glacial and Holocene vegeta-

tion patterns of Attica: A high-resolution record from Elefsis Bay, southern Greece', *Quaternary International*, http://doi.org/10.1016/j.quaint.2019.05.020.

- Lazarova, M., Koutsios, A. and Kontopoulos, N. (2012). 'Holocene vegetation history of the Kotihi lagoon (northwest Peloponnesus, Greece)', *Quaternary International*, vol. 261, pp. 138–145.
- McCormick, M. (2012). 'Movements and markets in the first millennium: Information, containers, and shipwrecks', in (C. Morrisson, ed.), *Trade and Markets in Byzantium*, pp. 51–98, Washington, D.C.: Dumbarton Oaks Research Library and Collection.
- McCormick, M. (2016). 'Navegación, naufragios y genes: consideraciones sobre Arqueología e Historia Económica Antigua y Medieval', in (R. González Arévalo, ed.), Navegación institucional y navegación privada en el Mediterráneo medieval, pp. 11–40, Granada: La Nao.
- Schwertheim, E. (2008). 'Sigeum', in (H. Cancik and H. Schneider, eds.), *Brill's New Pauly: Encyclopaedia of the Ancient World*, p. 446, vol. 13, Leiden and Boston: Brill.
- Triantaphyllou, M.V., Kouli, K., Tsourou, T., Koukousioura, O., Pavlopoulos, K. and Dermitzakis, M.D. (2010). 'Paleoenvironmental changes since 3000 BC in the coastal marsh of Vravron (Attica, SE Greece)', *Quaternary International*, vol. 216(1–2), pp. 14–22.
- Weiberg, E., Unkel, I., Kouli, K., Holmgren, K., Avramidis, P., Bonnier, A., Dibble, F., Finné, M., Izdebski, A., Katrantsiotis, C., Stocker, S.R., Andwinge, M., Baika, K., Boyd, M. and Heymann, C. (2016). 'The socio-environmental history of the Peloponnese during the Holocene: Towards an integrated understanding of the past', *Quaternary Science Reviews*, vol. 136, pp. 40–65.
- Wilson, A. (2011). 'Developments in Mediterranean shipping and maritime trade from the Hellenistic period to AD 1000', in (D. Robinson and A. Wilson, eds.), *Maritime Archaeology and Ancient Trade in the Mediterranean*, pp. 33–59, Oxford: Oxford Centre for Maritime Archaeology.