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Appendix A Proofs

Proof of Theorem 3.2. Lemma 3.1 states that β2SLS =
E[σ2(X)·τ(X)]

E[σ2(X)] . It remains to show that

σ2(X) = [π(X)]2 · Var [Z | X]. Indeed, it follows from the definition of σ2(X), equation (4), and
iterated expectations that σ2(X) = [ω(X)]2 · Var [Z | X]. Then, it follows from Lemma 2.1 that
σ2(X) = [π(X)]2 · Var [Z | X] because [ω(X)]2 = [π(X)]2 under Assumptions IV and WM.

Proof of Theorem 3.3. Let R and T be generic notation for two random variables, where T is
binary and R is arbitrarily discrete or continuous. The following lemma, due to Angrist (1998),
will be useful for what follows.

Lemma A.1 (Angrist, 1998). Suppose that E [T | X] is linear in X. Then, ξ, the coefficient on T in

the linear projection of R on T and X can be written as

ξ =
E

[
Var [T | X] · ξ(X)

]
E [Var [T | X]]

,

where ξ(X) = E [R | T = 1, X] − E [R | T = 0, X].

Recall that βIV is equal to the ratio of the reduced-form and first-stage coefficients on Z. It follows
that we can apply Lemma A.1 separately to these two coefficients, and thereby obtain the following
expression for the estimand of interest:

βIV =

E[Var[Z|X]·φ(X)]
E[Var[Z|X]]

E[Var[Z|X]·ω(X)]
E[Var[Z|X]]

, (A.1)

where
φ(x) = E [Y | Z = 1, X = x] − E [Y | Z = 0, X = x] (A.2)

is the conditional reduced-form slope coefficient and ω(x) is as defined in equation (5). Upon
rearrangement, we obtain

βIV =
E

[
Var [Z | X] · φ(X)

]
E [Var [Z | X] · ω(X)]

=
E

[
Var [Z | X] · ω(X) · β(X)

]
E [Var [Z | X] · ω(X)]

, (A.3)

where the second equality uses the definition of β(x) in equation (6). See also Walters (2018) for a
similar argument. Finally, we know from Lemma 2.1 that β(x) = τ(x) and ω(x) = c(x) · π(x) under
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Assumptions IV and WM. This completes the proof because βIV can now be written as

βIV =
E [c(X) · π(X) · Var [Z | X] · τ(X)]

E [c(X) · π(X) · Var [Z | X]]
. (A.4)

Alternative Proof of Theorem 3.3. The following proof of Theorem 3.3 uses Kolesár (2013)’s
result in Remark 3.4. Let us begin by restating the representation of two-step IV estimands in
equation (13):

βTSIV =

∫ Jx−1∑
j=1

θ j(x)∫ ∑Jx−1
j=1 θ j(x) dFX(x)

τ(p j,x; x) dFX(x). (A.5)

The notation is the same as in Remark 3.4. The representation in equation (A.5) is appropriate for
any two-step IV estimand (e.g., 2SLS) which uses ZG = zG(X,Z) as instruments, as long as D is
binary, Z is discrete, and the relevant assumptions are satisfied. When Z is binary and ZG = Z, we
get τ(p1,x; x) = τ(x) and βTSIV = βIV, and we can use equation (A.5) to write

βIV =

∫
θ1(x)∫

θ1(x) dFX(x)
τ(x) dFX(x)

=
E [θ1(X) · τ(X)]

E [θ1(X)]
, (A.6)

where

θ1(x) =
(
p2,x − p1,x

)
· P

[
P > p1,x | X = x

]
· E

[
P̃L | X = x, P > p1,x

]
=

∣∣∣ E [D | Z = 1, X = x] − E [D | Z = 0, X = x]
∣∣∣ · P [

P > p1,x | X = x
]

· E
[
P̃L | X = x, P > p1,x

]
= π(x) ·

(
1[ω(x) > 0] · P [Z = 1 | X = x] · E

[
P̃L | X = x,Z = 1

]
+ 1[ω(x) < 0] · P [Z = 0 | X = x] · E

[
P̃L | X = x,Z = 0

] )
. (A.7)

Next, if ZG = Z, we get P̃L = L [D | Z, X] − L [D | X]. If we write L [D | Z, X] = Zδ + Xζ, then
L [D | X] = L [Z | X] δ + Xζ, which implies that, under Assumption PS, P̃L = (Z − L [Z | X]) δ =

(Z − E [Z | X]) δ. It follows that E
[
P̃L | X,Z = 1

]
= (1 − E [Z | X]) δ = P [Z = 0 | X] · δ and

E
[
P̃L | X,Z = 0

]
= (0 − E [Z | X]) δ = −P [Z = 1 | X] · δ, and further that

θ1(x) = π(x) ·
(
1[ω(x) > 0] · P [Z = 1 | X = x] · P [Z = 0 | X = x] · δ

− 1[ω(x) < 0] · P [Z = 0 | X = x] · P [Z = 1 | X = x] · δ
)

= π(x) · c(x) · Var [Z | X = x] · δ, (A.8)
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which finally implies that

βIV =
E [c(X) · π(X) · Var [Z | X] · δ · τ(X)]

E [c(X) · π(X) · Var [Z | X] · δ]

=
E [c(X) · π(X) · Var [Z | X] · τ(X)]

E [c(X) · π(X) · Var [Z | X]]
. (A.9)

This completes the proof.

Proof of Corollary 3.4. Recall that Assumption SM is a special case of Assumption WM where
the existence of compliers but no defiers is postulated at all covariate values and the existence of
defiers but no compliers everywhere else (i.e. on an empty set). Thus, it follows from Theorem 3.3
that, under Assumptions IV, SM, and PS, βIV =

E[c(X)·π(X)·Var[Z|X]·τ(X)]
E[c(X)·π(X)·Var[Z|X]] and c(X) = 1 a.s.

Reordered IV. Remark 3.6 suggests using ZR = 1[ω(X) > 0] · Z + 1[ω(X) < 0] · (1 − Z) as a
new, “reordered” instrument in a noninteracted specification. This instrument is binary and takes
the value 1 if either Z = 1 and ω(X) > 0 or Z = 0 and ω(X) < 0; it also takes the value 0 if either
Z = 0 and ω(X) > 0 or Z = 1 and ω(X) < 0. It follows that ZR takes the value 1 for this value
of the original instrument that encourages treatment conditional on X and the value 0 otherwise.
When we construct the linear IV estimand using ZR rather than Z, we obtain

βRIV =
[(

E
[
Q′RW

])−1 E
[
Q′RY

]]
1
, (A.10)

where QR = (ZR, X) and, as before, W = (D, X). Formally, we establish the following result.

Corollary A.2 (Reordered IV). Suppose that Assumptions IV and WM hold. Suppose further that

E [ZR | X] = XαR. Then

βRIV =
E [π(X) · Var [Z | X] · τ(X)]

E [π(X) · Var [Z | X]]
.

Proof. The assumption that the conditional mean of the instrument is linear in X underlies the
proof of Theorem 3.3, including equation (A.3). Under this assumption, we can use equation (A.3)
to write

βRIV =
E

[
Var [ZR | X] · ωR(X) · βR(X)

]
E [Var [ZR | X] · ωR(X)]

, (A.11)

where
ωR(x) = E [D | ZR = 1, X = x] − E [D | ZR = 0, X = x] (A.12)

and
βR(x) =

φR(x)
ωR(x)

, (A.13)
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where
φR(x) = E [Y | ZR = 1, X = x] − E [Y | ZR = 0, X = x] . (A.14)

Then, it is important to see that ωR(x) = ω(x) and φR(x) = φ(x) if ω(x) > 0, ωR(x) = −ω(x) and
φR(x) = −φ(x) if ω(x) < 0, and consequently βR(x) = β(x) regardless of the sign of ω(x). We can
also write ωR(x) = c(x) ·ω(x), φR(x) = c(x) ·φ(x), and Var [ZR | X = x] = Var [Z | X = x] regardless
of the sign of ω(x). It follows that

βRIV =
E

[
Var [Z | X] · c(X) · ω(X) · β(X)

]
E [Var [Z | X] · c(X) · ω(X)]

. (A.15)

To complete this proof, note that, under Assumptions IV and WM, we know from Lemma 2.1 that
β(x) = τ(x) and ω(x) = c(x) · π(x). Also, [c(x)]2 = 1 because c(x) ∈ {−1, 1}. Thus, it follows that

βRIV =
E

[
Var [Z | X] · [c(X)]2 · π(X) · τ(X)

]
E

[
Var [Z | X] · [c(X)]2 · π(X)

]
=

E [Var [Z | X] · π(X) · τ(X)]
E [Var [Z | X] · π(X)]

. (A.16)

This completes the proof.
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Appendix B Simulations

Table B.1: Simulation Results for K = 250, “Strong” IV, and No Monotonicity Violations

N = 3,000 N = 10,000 N = 50,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE Bias Median
Bias MSE

OLS –0.670 –0.669 3.113 –0.670 –0.669 12.66 –0.669 –0.669 163.1
IV 0.005 0.000 0.121 –0.001 –0.001 0.128 0.000 0.000 0.325

2SLS –0.371 –0.372 1.000 –0.179 –0.180 1.000 –0.044 –0.044 1.000
MB2SLS 0.261 0.228 1.140 0.025 0.023 0.218 0.004 0.004 0.368

JIVE 2.900 0.700 5.1e+04 0.393 0.383 5.073 0.055 0.055 1.546
IJIVE –0.049 –0.054 0.252 –0.006 –0.010 0.182 0.000 0.000 0.357
UJIVE 0.024 0.013 0.327 0.001 –0.002 0.186 0.000 0.000 0.357
FEJIV 0.028 0.010 0.419 0.001 0.000 0.188 0.000 0.000 0.357

B. Pretest for Weak Identification
Average F̃ 11.30 33.99 173.25

q0.05 8.04 28.50 161.83
q0.95 14.82 39.74 184.88

Notes: The underlying data-generating process is described in Section 3.3.3. “OLS” is the OLS estimator in the regression of the outcome on
the treatment indicator and group indicators. “IV” is the IV estimator in the noninteracted specification. The remaining estimators are based on
the interacted specification and are described in Section 3.3. JIVE, IJIVE, and UJIVE are computed after dropping all groups with fewer than
two observations in either (X,Z) combination. FEJIV is computed after dropping all groups with fewer than three observations in either (X,Z)
combination. The pretest for weak identification follows Mikusheva and Sun (2022); see also the Stata implementation in Sun (2023). Bias and
median bias are reported as the proportion of the target parameter. MSE is normalized by the MSE of 2SLS. Results are based on 1,000 replications.
Pretest results are based on 250 replications.
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Table B.2: Simulation Results for K = 250, “Strong” IV, and Moderate Monotonicity Violations

N = 3,000 N = 10,000 N = 50,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE Bias Median
Bias MSE

OLS –1.051 –1.050 3.204 –1.051 –1.051 11.67 –1.051 –1.051 151.0
IV 0.190 0.180 0.303 0.172 0.173 0.499 0.173 0.173 4.551

2SLS –0.575 –0.578 1.000 –0.297 –0.299 1.000 –0.074 –0.074 1.000
MB2SLS 0.183 0.143 0.439 –0.017 –0.020 0.148 –0.004 –0.005 0.305

JIVE 68.98 1.944 1.5e+07 0.561 0.552 3.882 0.081 0.080 1.273
IJIVE –0.048 –0.061 0.226 –0.005 –0.006 0.154 0.000 –0.001 0.306
UJIVE 0.062 0.047 0.315 0.006 0.005 0.158 0.001 0.000 0.307
FEJIV 0.099 0.077 0.363 0.013 0.010 0.157 0.001 0.000 0.307

B. Pretest for Weak Identification
Average F̃ 11.48 33.45 162.81

q0.05 8.20 28.52 152.88
q0.95 15.08 38.69 172.65

Notes: The underlying data-generating process is described in Section 3.3.3. “OLS” is the OLS estimator in the regression of the outcome on
the treatment indicator and group indicators. “IV” is the IV estimator in the noninteracted specification. The remaining estimators are based on
the interacted specification and are described in Section 3.3. JIVE, IJIVE, and UJIVE are computed after dropping all groups with fewer than
two observations in either (X,Z) combination. FEJIV is computed after dropping all groups with fewer than three observations in either (X,Z)
combination. The pretest for weak identification follows Mikusheva and Sun (2022); see also the Stata implementation in Sun (2023). Bias and
median bias are reported as the proportion of the target parameter. MSE is normalized by the MSE of 2SLS. Results are based on 1,000 replications.
Pretest results are based on 250 replications.
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Table B.3: Simulation Results for K = 250, “Strong” IV, and Large Monotonicity Violations

N = 3,000 N = 10,000 N = 50,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE Bias Median
Bias MSE

OLS –1.058 –1.059 3.132 –1.060 –1.060 11.29 –1.059 –1.059 147.4
IV 0.729 0.546 4.686 0.564 0.551 4.983 0.545 0.541 43.22

2SLS –0.586 –0.588 1.000 –0.305 –0.307 1.000 –0.077 –0.078 1.000
MB2SLS 0.038 0.024 0.251 –0.047 –0.050 0.151 –0.011 –0.013 0.271

JIVE –11.89 2.337 1.4e+06 0.527 0.515 3.309 0.077 0.075 1.091
IJIVE –0.058 –0.073 0.234 –0.005 –0.007 0.148 0.000 –0.002 0.262
UJIVE 0.056 0.030 0.327 0.007 0.006 0.153 0.000 –0.001 0.262
FEJIV 0.099 0.074 0.357 0.014 0.012 0.153 0.000 –0.001 0.262

B. Pretest for Weak Identification
Average F̃ 11.61 32.16 155.20

q0.05 8.07 27.72 146.33
q0.95 15.66 36.54 165.50

Notes: The underlying data-generating process is described in Section 3.3.3. “OLS” is the OLS estimator in the regression of the outcome on
the treatment indicator and group indicators. “IV” is the IV estimator in the noninteracted specification. The remaining estimators are based on
the interacted specification and are described in Section 3.3. JIVE, IJIVE, and UJIVE are computed after dropping all groups with fewer than
two observations in either (X,Z) combination. FEJIV is computed after dropping all groups with fewer than three observations in either (X,Z)
combination. The pretest for weak identification follows Mikusheva and Sun (2022); see also the Stata implementation in Sun (2023). Bias and
median bias are reported as the proportion of the target parameter. MSE is normalized by the MSE of 2SLS. Results are based on 1,000 replications.
Pretest results are based on 250 replications.
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Table B.4: Simulation Results for K = 250, “Strong” IV, and Monotonicity Violations with Weak Cells

N = 3,000 N = 10,000 N = 50,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE Bias Median
Bias MSE

OLS –1.127 –1.128 2.354 –1.125 –1.126 6.550 –1.125 –1.125 72.16
IV 0.811 0.629 24.01 0.678 0.600 4.107 0.641 0.633 26.21

2SLS –0.721 –0.726 1.000 –0.427 –0.429 1.000 –0.120 –0.119 1.000
MB2SLS 0.146 0.079 0.600 –0.072 –0.076 0.167 –0.018 –0.018 0.241

JIVE –3.500 –3.108 257.9 1.185 1.076 9.265 0.128 0.128 1.235
IJIVE –0.058 –0.108 0.429 –0.011 –0.020 0.174 –0.001 –0.002 0.231
UJIVE 0.164 0.058 0.996 0.008 –0.002 0.183 –0.001 –0.001 0.232
FEJIV 0.220 0.116 1.757 0.019 0.008 0.180 –0.001 –0.001 0.232

B. Pretest for Weak Identification
Average F̃ 7.64 20.47 99.71

q0.05 5.09 16.36 92.88
q0.95 10.82 24.61 107.47

Notes: The underlying data-generating process is described in Section 3.3.3. “OLS” is the OLS estimator in the regression of the outcome on
the treatment indicator and group indicators. “IV” is the IV estimator in the noninteracted specification. The remaining estimators are based on
the interacted specification and are described in Section 3.3. JIVE, IJIVE, and UJIVE are computed after dropping all groups with fewer than
two observations in either (X,Z) combination. FEJIV is computed after dropping all groups with fewer than three observations in either (X,Z)
combination. The pretest for weak identification follows Mikusheva and Sun (2022); see also the Stata implementation in Sun (2023). Bias and
median bias are reported as the proportion of the target parameter. MSE is normalized by the MSE of 2SLS. Results are based on 1,000 replications.
Pretest results are based on 250 replications.
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Table B.5: Simulation Results for K = 20, “Weak” IV, and No Monotonicity Violations

N = 3,000 N = 10,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE

OLS –0.737 –0.736 1.875 –0.737 –0.736 5.975
IV 0.070 –0.004 1.368 0.024 0.010 0.902

2SLS –0.426 –0.419 1.000 –0.199 –0.204 1.000
MB2SLS 0.696 –0.009 193.4 0.053 0.021 1.569

JIVE –1.586 –1.084 1.2e+03 1.092 0.559 3.0e+03
IJIVE 0.384 –0.055 440.5 0.058 0.023 1.671
UJIVE –1.492 –0.039 8.0e+04 0.065 0.026 1.755
FEJIV –1.280 –0.012 2.1e+03 0.063 0.027 1.700

B. Pretest for Weak Identification
Average F̃ 2.80 7.84

q0.05 0.28 4.14
q0.95 6.15 12.49

Notes: The underlying data-generating process is described in Section 3.3.3. “OLS” is the OLS estimator in the regression
of the outcome on the treatment indicator and group indicators. “IV” is the IV estimator in the noninteracted specification.
The remaining estimators are based on the interacted specification and are described in Section 3.3. JIVE, IJIVE, and UJIVE
are computed after dropping all groups with fewer than two observations in either (X,Z) combination. FEJIV is computed
after dropping all groups with fewer than three observations in either (X,Z) combination. The pretest for weak identification
follows Mikusheva and Sun (2022); see also the Stata implementation in Sun (2023). Bias and median bias are reported as
the proportion of the target parameter. MSE is normalized by the MSE of 2SLS. Results are based on 1,000 replications.
Pretest results are based on 250 replications.
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Table B.6: Simulation Results for K = 20, “Weak” IV, and Moderate Monotonicity Violations

N = 3,000 N = 10,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE

OLS –1.134 –1.132 1.949 –1.133 –1.132 6.075
IV 2.716 0.186 8.0e+03 0.277 0.199 2.317

2SLS –0.663 –0.652 1.000 –0.312 –0.318 1.000
MB2SLS 0.295 –0.095 386.4 0.051 –0.011 1.540

JIVE –2.849 –1.689 1.6e+03 –3.561 0.768 6.6e+04
IJIVE 1.833 –0.072 3.4e+03 0.092 0.031 1.801
UJIVE 2.511 –0.061 1.2e+04 0.102 0.035 1.899
FEJIV 1.033 –0.027 1.1e+03 0.099 0.033 1.769

B. Pretest for Weak Identification
Average F̃ 2.62 7.75

q0.05 0.24 3.90
q0.95 5.50 12.03

Notes: The underlying data-generating process is described in Section 3.3.3. “OLS” is the OLS estimator in the regression
of the outcome on the treatment indicator and group indicators. “IV” is the IV estimator in the noninteracted specification.
The remaining estimators are based on the interacted specification and are described in Section 3.3. JIVE, IJIVE, and UJIVE
are computed after dropping all groups with fewer than two observations in either (X,Z) combination. FEJIV is computed
after dropping all groups with fewer than three observations in either (X,Z) combination. The pretest for weak identification
follows Mikusheva and Sun (2022); see also the Stata implementation in Sun (2023). Bias and median bias are reported as
the proportion of the target parameter. MSE is normalized by the MSE of 2SLS. Results are based on 1,000 replications.
Pretest results are based on 250 replications.
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Table B.7: Simulation Results for K = 20, “Weak” IV, and Large Monotonicity Violations

N = 3,000 N = 10,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE

OLS –1.138 –1.137 1.951 –1.138 –1.137 6.109
IV 0.602 0.074 506.6 0.802 0.331 67.86

2SLS –0.663 –0.649 1.000 –0.324 –0.332 1.000
MB2SLS 1.209 –0.122 1.1e+03 0.025 –0.031 1.331

JIVE –0.965 –1.781 8.5e+03 0.440 0.752 3.1e+03
IJIVE –0.203 –0.099 183.9 0.084 0.003 1.653
UJIVE 0.093 –0.090 264.9 0.094 0.011 1.736
FEJIV 0.369 –0.003 239.8 0.090 0.014 1.645

B. Pretest for Weak Identification
Average F̃ 2.54 7.48

q0.05 0.02 3.80
q0.95 5.97 11.62

Notes: The underlying data-generating process is described in Section 3.3.3. “OLS” is the OLS estimator in the regression
of the outcome on the treatment indicator and group indicators. “IV” is the IV estimator in the noninteracted specification.
The remaining estimators are based on the interacted specification and are described in Section 3.3. JIVE, IJIVE, and UJIVE
are computed after dropping all groups with fewer than two observations in either (X,Z) combination. FEJIV is computed
after dropping all groups with fewer than three observations in either (X,Z) combination. The pretest for weak identification
follows Mikusheva and Sun (2022); see also the Stata implementation in Sun (2023). Bias and median bias are reported as
the proportion of the target parameter. MSE is normalized by the MSE of 2SLS. Results are based on 1,000 replications.
Pretest results are based on 250 replications.
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Table B.8: Simulation Results for K = 20, “Weak” IV, and Monotonicity Violations with Weak Cells

N = 3,000 N = 10,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE

OLS –1.152 –1.151 1.633 –1.149 –1.149 4.847
IV 1.409 0.139 1.3e+03 –0.872 0.323 7.7e+03

2SLS –0.740 –0.749 1.000 –0.371 –0.371 1.000
MB2SLS –0.276 –0.290 104.8 0.059 –0.005 1.658

JIVE –0.889 –1.696 1.8e+03 0.803 0.969 7.9e+03
IJIVE –0.672 –0.202 892.2 0.131 0.053 2.075
UJIVE –0.751 –0.212 377.9 0.148 0.067 2.243
FEJIV 0.265 –0.122 351.7 0.138 0.064 2.130

B. Pretest for Weak Identification
Average F̃ 2.18 6.09

q0.05 –0.02 2.32
q0.95 4.66 9.85

Notes: The underlying data-generating process is described in Section 3.3.3. “OLS” is the OLS estimator in the regression
of the outcome on the treatment indicator and group indicators. “IV” is the IV estimator in the noninteracted specification.
The remaining estimators are based on the interacted specification and are described in Section 3.3. JIVE, IJIVE, and UJIVE
are computed after dropping all groups with fewer than two observations in either (X,Z) combination. FEJIV is computed
after dropping all groups with fewer than three observations in either (X,Z) combination. The pretest for weak identification
follows Mikusheva and Sun (2022); see also the Stata implementation in Sun (2023). Bias and median bias are reported as
the proportion of the target parameter. MSE is normalized by the MSE of 2SLS. Results are based on 1,000 replications.
Pretest results are based on 250 replications.
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Table B.9: Simulation Results for K = 20, “Strong” IV, and No Monotonicity Violations

N = 3,000 N = 10,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE

OLS –0.669 –0.669 29.70 –0.669 –0.668 105.8
IV 0.003 –0.001 0.949 0.002 0.002 0.983

2SLS –0.049 –0.052 1.000 –0.014 –0.015 1.000
MB2SLS 0.009 0.005 1.053 0.004 0.003 1.021

JIVE 0.072 0.063 1.679 0.023 0.022 1.226
IJIVE 0.004 0.001 1.027 0.003 0.002 1.020
UJIVE 0.007 0.002 1.047 0.004 0.002 1.023
FEJIV 0.007 0.001 1.033 0.004 0.002 1.020

B. Pretest for Weak Identification
Average F̃ 42.75 131.58

q0.05 31.36 113.22
q0.95 55.10 154.91

Notes: The underlying data-generating process is described in Section 3.3.3. “OLS” is the OLS estimator in the regression
of the outcome on the treatment indicator and group indicators. “IV” is the IV estimator in the noninteracted specification.
The remaining estimators are based on the interacted specification and are described in Section 3.3. JIVE, IJIVE, and UJIVE
are computed after dropping all groups with fewer than two observations in either (X,Z) combination. FEJIV is computed
after dropping all groups with fewer than three observations in either (X,Z) combination. The pretest for weak identification
follows Mikusheva and Sun (2022); see also the Stata implementation in Sun (2023). Bias and median bias are reported as
the proportion of the target parameter. MSE is normalized by the MSE of 2SLS. Results are based on 1,000 replications.
Pretest results are based on 250 replications.

14



Table B.10: Simulation Results for K = 20, “Strong” IV, and Moderate Monotonicity Violations

N = 3,000 N = 10,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE

OLS –1.027 –1.027 32.72 –1.025 –1.025 114.2
IV 0.213 0.196 3.545 0.206 0.200 6.702

2SLS –0.084 –0.089 1.000 –0.021 –0.022 1.000
MB2SLS –0.003 –0.008 0.958 0.004 0.003 1.012

JIVE 0.099 0.094 1.562 0.036 0.033 1.237
IJIVE 0.002 0.002 0.980 0.007 0.005 1.025
UJIVE 0.006 0.005 0.999 0.007 0.006 1.028
FEJIV 0.006 0.003 0.986 0.007 0.007 1.025

B. Pretest for Weak Identification
Average F̃ 40.58 124.89

q0.05 31.14 107.54
q0.95 51.84 140.35

Notes: The underlying data-generating process is described in Section 3.3.3. “OLS” is the OLS estimator in the regression
of the outcome on the treatment indicator and group indicators. “IV” is the IV estimator in the noninteracted specification.
The remaining estimators are based on the interacted specification and are described in Section 3.3. JIVE, IJIVE, and UJIVE
are computed after dropping all groups with fewer than two observations in either (X,Z) combination. FEJIV is computed
after dropping all groups with fewer than three observations in either (X,Z) combination. The pretest for weak identification
follows Mikusheva and Sun (2022); see also the Stata implementation in Sun (2023). Bias and median bias are reported as
the proportion of the target parameter. MSE is normalized by the MSE of 2SLS. Results are based on 1,000 replications.
Pretest results are based on 250 replications.
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Table B.11: Simulation Results for K = 20, “Strong” IV, and Large Monotonicity Violations

N = 3,000 N = 10,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE

OLS –1.032 –1.033 31.52 –1.032 –1.030 117.0
IV 0.397 0.333 13.87 0.357 0.339 22.19

2SLS –0.087 –0.090 1.000 –0.026 –0.026 1.000
MB2SLS –0.008 –0.012 0.950 –0.001 –0.002 0.987

JIVE 0.096 0.086 1.532 0.031 0.030 1.182
IJIVE 0.002 0.001 0.986 0.004 0.003 1.002
UJIVE 0.006 0.004 1.007 0.004 0.003 1.005
FEJIV 0.007 0.002 0.989 0.004 0.003 1.002

B. Pretest for Weak Identification
Average F̃ 39.01 119.92

q0.05 28.85 104.08
q0.95 49.38 136.68

Notes: The underlying data-generating process is described in Section 3.3.3. “OLS” is the OLS estimator in the regression
of the outcome on the treatment indicator and group indicators. “IV” is the IV estimator in the noninteracted specification.
The remaining estimators are based on the interacted specification and are described in Section 3.3. JIVE, IJIVE, and UJIVE
are computed after dropping all groups with fewer than two observations in either (X,Z) combination. FEJIV is computed
after dropping all groups with fewer than three observations in either (X,Z) combination. The pretest for weak identification
follows Mikusheva and Sun (2022); see also the Stata implementation in Sun (2023). Bias and median bias are reported as
the proportion of the target parameter. MSE is normalized by the MSE of 2SLS. Results are based on 1,000 replications.
Pretest results are based on 250 replications.
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Table B.12: Simulation Results for K = 20, “Strong” IV, and Monotonicity Violations with Weak Cells

N = 3,000 N = 10,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE

OLS –1.062 –1.064 25.17 –1.061 –1.062 91.49
IV 0.374 0.325 7.865 0.340 0.333 14.39

2SLS –0.101 –0.101 1.000 –0.032 –0.030 1.000
MB2SLS –0.004 –0.011 0.987 –0.001 0.001 0.990

JIVE 0.123 0.101 1.732 0.038 0.042 1.206
IJIVE 0.006 –0.002 1.022 0.004 0.007 1.005
UJIVE 0.011 0.002 1.052 0.004 0.008 1.008
FEJIV 0.012 0.004 1.008 0.004 0.008 1.007

B. Pretest for Weak Identification
Average F̃ 33.37 101.53

q0.05 24.50 85.67
q0.95 42.08 117.25

Notes: The underlying data-generating process is described in Section 3.3.3. “OLS” is the OLS estimator in the regression
of the outcome on the treatment indicator and group indicators. “IV” is the IV estimator in the noninteracted specification.
The remaining estimators are based on the interacted specification and are described in Section 3.3. JIVE, IJIVE, and UJIVE
are computed after dropping all groups with fewer than two observations in either (X,Z) combination. FEJIV is computed
after dropping all groups with fewer than three observations in either (X,Z) combination. The pretest for weak identification
follows Mikusheva and Sun (2022); see also the Stata implementation in Sun (2023). Bias and median bias are reported as
the proportion of the target parameter. MSE is normalized by the MSE of 2SLS. Results are based on 1,000 replications.
Pretest results are based on 250 replications.
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Appendix C Review of Applications of Instrumental Variables

Table C.1: Negative First Stages with Alternative Binarizations

Z1 Z2 Z3

LPM Probit LPM Probit LPM Probit

D1
Average Share 0.293 0.250 0.246 0.157 0.281 0.263

Weighted Average Share 0.321 0.304 0.277 0.253 0.315 0.327

D2
Average Share 0.272 0.220 0.218 0.176 0.199 0.187

Weighted Average Share 0.327 0.314 0.285 0.280 0.263 0.259

D3
Average Share 0.379 0.341 0.276 0.190 0.243 0.223

Weighted Average Share 0.379 0.382 0.316 0.283 0.293 0.307
Notes: The table reports summary statistics on the fraction of observations for which Ê

[
D j | Zk = 1, X = x

]
−

Ê
[
D j | Zk = 0, X = x

]
is negative. “Average Share” treats every applicable regression equally. “Weighted Average Share”

weights by the inverse of the number of applicable regressions associated with a given paper. D j and Zk are defined as
either the original endogenous explanatory variable and instrument (if they are binary) or indicators for whether these
variables are above the jth and kth quartile, respectively, subject to a normalization that Zk is always associated with a
positive estimated coefficient in the linear first stage. Sampling weights and clustered standard errors are used in line with
the original papers.
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Table C.2: First-Stage Heterogeneity with Alternative Binarizations

Z1 Z2 Z3

LPM Probit LPM Probit LPM Probit

D1
Rejected Papers 25/25 18/20 22/25 16/18 25/25 15/19

Average Share of Rejections 0.807 0.749 0.781 0.765 0.855 0.752

D2
Rejected Papers 24/25 19/22 22/25 19/21 24/25 18/21

Average Share of Rejections 0.789 0.756 0.715 0.749 0.789 0.768

D3
Rejected Papers 24/25 18/20 24/25 18/21 24/25 19/20

Average Share of Rejections 0.824 0.733 0.779 0.744 0.817 0.747
Notes: The table reports results of Wald tests that the coefficients on the interaction terms in regressions of D j on Zk, X, and

ZkX are jointly equal to zero. “Rejected Papers” reports the number of papers for which the Bonferroni p-value is less than or
equal to 0.05. “Average Share of Rejections” reports the average share (across papers) of regressions associated with a given
paper for which the corresponding Holm p-value is less than or equal to 0.05. D j and Zk are defined as either the original
endogenous explanatory variable and instrument (if they are binary) or indicators for whether these variables are above the jth
and kth quartile, respectively, subject to a normalization that Zk is always associated with a positive estimated coefficient in
the linear first stage. Sampling weights and clustered standard errors are used in line with the original papers.
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Table C.3: Detailed Results on Negative First Stages and First-Stage Heterogeneity

Average Share of Negative First Stages First-Stage Heterogeneity
Bonferroni p-Value Share of Rejections

LPM Probit LPM Probit LPM Probit
Acemoglu et al. (2008) 0.546 0.554 0 0 1 1

Albouy (2012) 0.147 0.122 0.115 0 0 0.226
Alesina and Zhuravskaya (2011) 0.145 0.159 0.001 0 0.064 0.011

Ananat (2011) 0.020 0.223 0.308 1 0 0
Autor et al. (2013) 0.009 0.036 0 0 0.894 0.894

Bazzi and Clemens (2013) 0.303 0.242 0 1 0.750 0
Becker et al. (2011) 0.068 0.100 0 0 0.125 0.450

Bleakley and Chin (2010) 0.206 0.029 0 0 1 1
Brown and Laschever (2012) 0.134 0.143 0 0 0.375 0.375

Chalfin (2015) 0.342 N/A 0 0 1 1
Chodorow-Reich et al. (2012) 0.123 0.105 1 N/A 0 N/A

Chou et al. (2010) 0.514 0.503 0 0 1 1
Collins and Shester (2013) 0.343 0.341 0 0 1 1

Decarolis (2015) 0.595 0.568 0 0 0.667 1
Dinkelman (2011) 0.306 0.271 0 0 0.158 1
Draca et al. (2011) 0.250 0.269 0 0 1 1

Guryan and Kearney (2010) 0.427 N/A 0 N/A 1 N/A
Hornung (2014) 0.116 0.151 0 0 0.909 0.889

Hunt and Gauthier-Loiselle (2010) 0.245 0.335 0 0 1 1
James (2015) 0.555 0.616 0 0 1 1
Kraay (2014) 0.435 0.439 0 0 1 1

Lipscomb et al. (2013) 0 0 0.018 0.002 1 1
Moser et al. (2014) 0.671 0.626 0 N/A 1 N/A
Oreopoulos (2006) 0.463 0.434 0 0 0.941 0.875

Saiz and Wachter (2011) 0.152 0.165 0 N/A 1 N/A

Number of Regressions 988 930 988 899 988 899

Notes: “Average Share of Negative First Stages” reports the average fraction of observations for which Ê [D | Z = 1, X = x] −
Ê [D | Z = 0, X = x] is negative. “First-Stage Heterogeneity” reports results of Wald tests that the coefficients on the interaction terms
in regressions of D on Z, X, and ZX are jointly equal to zero. “Bonferroni p-Value” reports the product of the smallest p-value associ-
ated with a given paper and the number of applicable regressions in that paper. “Share of Rejections” reports the fraction of applicable
regressions associated with a given paper for which the corresponding Holm p-value is less than or equal to 0.05. D and Z are defined as
either the original endogenous explanatory variable and instrument (if they are binary) or indicators for whether these variables are above
their medians, subject to a normalization that Z is always associated with a positive estimated coefficient in the linear first stage. Sampling
weights and clustered standard errors are used in line with the original papers.
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Appendix D Reanalysis of Stevenson (2018)

Table D.1: Alternative Estimates of the Effects of Pretrial Detention on Conviction and Incarceration Length

Specification #1 Specification #2 Specification #3
A. Effects on Conviction β̂ σ̂β̂ β̂ σ̂β̂ β̂ σ̂β̂

MB2SLS 0.1610*** 0.0360 0.1860*** 0.0326 0.0751*** 0.0271
JIVE 0.2127 0.1969 0.3762 0.2783 0.3251 0.3863

B. Effects on Incarceration Length β̂ σ̂β̂ β̂ σ̂β̂ β̂ σ̂β̂
MB2SLS 134*** 47 140*** 41 55 43

JIVE –313 280 –225 359 1,279* 732

Number of Groups 431 563 981
Number of Observations 327,560 325,915 319,573

Notes: The data are Stevenson (2018)’s sample of 331,971 arrests in Philadelphia. The outcomes are conviction (Panel A) or incarceration
length (Panel B), defined as the maximum days of an incarceration sentence. The treatment is pretrial detention. The instrument is whether a
given case was heard by Judge C. Each specification is based on a division of the sample into a number of mutually exclusive groups, with a
separate group for each combination of values of selected variables. Specification #1 uses the offense type and race (Black, White, or other)
of the defendant. Specification #2 uses the offense type, race, and gender (male or female) of the defendant. Specification #3 uses the offense
type, race and gender of the defendant, and three time periods considered by Stevenson (2018). Groups with fewer than three observations in
either (G,Z) combination are dropped. MB2SLS and JIVE are based on the interacted specification and are described in Section 3.3.
*Statistically different from zero at the 10% level; **at the 5% level; ***at the 1% level.
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Table D.2: Bootstrap p-Values for the Comparison of the Noninteracted and Interacted Specifications

Specification #1 Specification #2 Specification #3
A. Effects on Conviction

2SLS 0.496 0.486 0.301
MB2SLS 0.829 0.956 0.377

JIVE 0.818 0.119 0.195
UJIVE 0.619 0.671 0.229

B. Effects on Incarceration Length
2SLS 0.051 0.019 0.030

MB2SLS 0.049 0.021 0.017
JIVE 0.001 0.001 0.031

UJIVE 0.032 0.016 0.016

Number of Groups 431 563 981
Number of Observations 327,560 325,915 319,573

Notes: This table revisits the estimates in Tables 8 and D.1. The data are Stevenson (2018)’s sample of 331,971 arrests in Philadelphia.
The outcomes are conviction (Panel A) or incarceration length (Panel B), defined as the maximum days of an incarceration sentence.
The treatment is pretrial detention. The instrument is whether a given case was heard by Judge C. Each specification is based
on a division of the sample into a number of mutually exclusive groups, with a separate group for each combination of values of
selected variables. Specification #1 uses the offense type and race (Black, White, or other) of the defendant. Specification #2 uses
the offense type, race, and gender (male or female) of the defendant. Specification #3 uses the offense type, race and gender of
the defendant, and three time periods considered by Stevenson (2018). Groups with fewer than three observations in either (G,Z)
combination are dropped. Each p-value is calculated using a bootstrap test of the equality of the estimands in the noninteracted and
interacted specifications (with 250 bootstrap replications). The noninteracted specification is estimated using IV. The estimators of
the interacted specification, listed in the first column, are described in Section 3.3.
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Table D.3: Bootstrap p-Values for the Comparison of 2SLS and Other Estimators of the Interacted Specification

Specification #1 Specification #2 Specification #3
A. Effects on Conviction

MB2SLS 0.008 0.000 0.450
JIVE 0.018 0.000 0.000

UJIVE 0.188 0.057 0.176

B. Effects on Incarceration Length
MB2SLS 0.404 0.490 0.030

JIVE 0.000 0.000 0.000
UJIVE 0.010 0.108 0.006

Number of Groups 431 563 981
Number of Observations 327,560 325,915 319,573

Notes: This table revisits the estimates in Tables 8 and D.1. The data are Stevenson (2018)’s sample of 331,971 arrests in Philadelphia.
The outcomes are conviction (Panel A) or incarceration length (Panel B), defined as the maximum days of an incarceration sentence.
The treatment is pretrial detention. The instrument is whether a given case was heard by Judge C. Each specification is based on a
division of the sample into a number of mutually exclusive groups, with a separate group for each combination of values of selected
variables. Specification #1 uses the offense type and race (Black, White, or other) of the defendant. Specification #2 uses the offense
type, race, and gender (male or female) of the defendant. Specification #3 uses the offense type, race and gender of the defendant,
and three time periods considered by Stevenson (2018). Groups with fewer than three observations in either (G,Z) combination are
dropped. Each p-value is calculated using a bootstrap test of the equality of the probability limits of 2SLS and other estimators in the
interacted specifications (with 250 bootstrap replications). Other estimators of the interacted specification, listed in the first column,
are described in Section 3.3.
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