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This document contains appendices that supplement the main text. Appendix B

formalizes the connection between uniform causal representations and weakly causal es-

timands, defined in Blandhol, Bonney, Mogstad, and Torgovitsky (2022). Appendix C

supplements the estimation and inference section (Section 6) and provides an algorithm

for constructing confidence intervals. Appendices D–G provide proofs for results in

the main text and for results in Appendices B and C. Appendix H contains additional

calculations related to the weights for the TWFE estimand.

B Weakly Causal Estimands and Uniform Causal Representations in Tall

We now establish equivalence between weakly causal estimands as defined in Blandhol,

Bonney, Mogstad, and Torgovitsky (2022) (henceforth, BBMT) and estimands that

have uniform causal representations as in Theorem 3.1. As in BBMT, consider the

case where X has finite support and, as in this paper, assume the treatment is binary.

We also abstract from choice groups denoted by G in BBMT.

Since X has finite support, let supp(X | W0 = 1) = {x1, . . . , xK} and let τ :=

(τ(x1), . . . , τ(xK)) ∈ RK be the collection of CATEs. For d ∈ {0, 1} let νd(x) :=

E[Y (d) | W0 = 1, X = x] denote the average structural function (ASF) which also

conditions on W0 = 1, let νd := (νd(x1), . . . , νd(xK)) ∈ RK , and let M⊆ R2K be a set

of possible ASFs such that (ν0, ν1) ∈M. We now state the definition of weakly causal

estimands from BBMT (i.e., their Definition WC) in our setting which features binary

treatments.
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Definition B.1. The estimand β is weakly causal if the following statements are true

for all (ν0, ν1) ∈M:

1. If ν1 − ν0 ≥ 0K ,1 then β ≥ 0.

2. If ν1 − ν0 ≤ 0K , then β ≤ 0.

Thus, an estimand is weakly causal if all CATEs having the same sign implies the

estimand also has that sign. Whether an estimand satisfies this condition also depends

on M, the set of allowed ASFs. To compare weak causality to our result on uniform

causal representations, we consider Mall := R2K , the unrestricted set of ASFs. The

corresponding unrestricted set of CATE functions, which we denoted by Tall, allows τ

to be any vector in RK . We consider estimands characterized by our equation (1.1).

We note that these estimands rule out “level dependence,” i.e., that the estimand

changes if potential outcomes (Y (0), Y (1)) are translated to (Y (0) + c, Y (1) + c) for

some constant c ∈ R. For example, the IV estimand is generally level dependent when

the propensity score P(Z = 1 | X) is nonlinear in X.2 With these choices, we can

show the two definitions are equivalent.

Proposition B.1. Let µ(a, τ0) be an estimand satisfying equation (1.1). Suppose

Assumption 3.1 holds and that amax < ∞. Then µ(a, τ0) is weakly causal with

M =Mall if and only if it has a causal representation uniformly in Tall.

The proof of this proposition hinges on the equivalence, under level independence, of

weakly causal estimands and estimands with nonnegative weights, as in Proposition 4

of BBMT. Also, as shown in Theorem 3.1, estimands with nonnegative weights

have a uniform causal representation in Tall. Therefore, a weighted estimand has

nonnegative weights if and only if it is weakly causal and if and only if it has a causal

representation uniformly in Tall. Thus, a weakly causal estimand admits a regular

subpopulation W ∗ such that the estimand measures the average effect of treatment

over that subpopulation.

C Details on Estimation and Inference

This appendix complements Section 6 in the main text. In it, we compute the limiting

distribution of our estimated measure of internal validity and prove the validity of a

nonstandard bootstrap algorithm for constructing confidence intervals around it. This

1Vector inequalities hold if they hold component-wise.
2See p. 17 in BBMT.
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is done for the case where T = Tall. Estimation and inference for P (a,W0; {τ0}) is

related to the question of estimation and inference in linear programs with estimated

constraints. See Andrews, Roth, and Pakes (2023), Cox and Shi (2023), Fang, Santos,

Shaikh, and Torgovitsky (2023), and Cho and Russell (2024) for recent advances on

this topic.

As in Section 6, we consider the case where X is discrete. We assume the existence

of estimators for a(·) and w0(·), but we do not assume knowledge of supp(X | W0 = 1).

In this case, a(x) and w0(x) are usually estimated “cell-by-cell” and their estimators

are
√
n-consistent with a limiting Gaussian distribution. We will see that inference

on P (a,W0; Tall) is generally nonstandard and, as a result, most common bootstrap

procedures fail.

We consider the following simple plug-in estimator:

P̂ =
1
n

∑n
i=1 â(Xi)ŵ0(Xi)

1
n

∑n
i=1 ŵ0(Xi) ·maxi:ŵ0(Xi)>cn â(Xi)

,

where cn is a tuning parameter that converges to 0 as n→∞. Note that this tuning

parameter is absent when w0 is known, for example when W0 = 1 almost surely. This

estimator does not assume knowledge of the support of X given W0 = 1, but it can

also be implemented by taking the maximum over supp(X | W0 = 1) when it is known.

Let supp(X) = {x1, . . . , xK}, denote by pj = P(X = xj) the frequency of cell

j, and let p̂j = 1
n

∑n
i=1 1(Xi = xj) denote its sample frequency. Let θ̂ = (â, ŵ0, p̂)

where â = (â(x1), . . . , â(xK)), ŵ0 = (ŵ0(x1), . . . , ŵ0(xK)), and p̂ = (p̂1, . . . , p̂K). Let

θ = (a,w0,p) denote their population counterparts.

We make the following assumption on the behavior of the first-step estimators.

Assumption C.1 (Preliminary estimators). Let

√
n(θ̂ − θ) d−→ Z

where Z := (Za,Zw0 ,ZX) ∈ R3K has a Gaussian distribution.

The above assumption is often satisfied when X has finite support since estimators

for a(xj) and w0(xj) can be obtained using only the observations for which Xi = xj.

Note that the limiting distribution of Zw0 may be degenerate. For example, if W0 = 1

almost surely, then ŵ0(x) = w0(x) = 1 and thus Zw0 = 0K , a K-vector of zeros.
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The next theorem shows the consistency of P̂ and establishes the limiting distribu-

tion of this estimator. To simplify the exposition, we use P to denote P (a,W0; Tall) in

what follows.

Theorem C.1 (Consistency and asymptotic distribution). Suppose Assumption C.1

holds. Suppose cn = o(1) and cn
√
n → ∞ as n → ∞. Suppose P 6= 0. Then, P̂ is

consistent for P and

√
n(P̂ − P )

d−→ ψ(Z),

where ψ is a continuous mapping defined by

ψ(Z) =
K∑
j=1

w0(xj)pj
P(W0 = 1)amax

Za(j) − E[a(X) | W0 = 1]

a2
max

max
j∈ΨX+

Za(j)

+
K∑
j=1

(a(xj)− E[a(X) | W0 = 1])pj
P(W0 = 1)amax

Zw0(j)

+
K∑
j=1

(a(xj)− E[a(X) | W0 = 1])w0(xj)

P(W0 = 1)amax

ZX(j), (C.1)

where ΨX+ = {j ∈ {1, . . . , K} : a(xj) = amax}.

The mapping ψ is linear if and only if a(x) is maximized at a unique value x ∈
supp(X | W0 = 1), and nonlinear if multiple values maximize a(x). The linearity of

this mapping crucially affects the choice of the inference procedure. When ψ is linear,

the limiting distribution of P̂ is Gaussian and common bootstrap procedures, such as

the empirical bootstrap, are valid whenever they are valid for θ̂.

However, when a(x) is maximized at more than one value, the limiting distribution

of P̂ is nonlinear in Z and thus non-Gaussian. In this case, it can be shown (see

Theorem 3.1 in Fang and Santos (2019)) that standard bootstrap approaches are

invalid. However, the fact that the estimand P can be written as a Hadamard

directionally differentiable mapping of θ implies that alternative bootstrap procedures,

such as those proposed by Hong and Li (2018) and Fang and Santos (2019), can be

applied to obtain valid inferences on P .

We propose a bootstrap procedure that can be applied regardless of the linearity

of ψ. In order to show its validity, we assume that the limiting distribution Z can be

approximated via a bootstrap procedure.
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Assumption C.2 (Bootstrap for first-step estimators). Let Z∗ := (Z∗a,Z∗w0
,Z∗X) ∈

R3K be a random vector such that Z∗ p
 Z, where

p
 denotes convergence in probability

conditioning on the data used to compute θ̂.

This assumption is easily satisfied when p̂ are sample frequencies, (â, ŵ0) are cell-

by-cell estimators that are asymptotically linear and Gaussian, and when Z∗ is the

distribution of these estimators under a standard bootstrap approach. For example, for

the empirical bootstrap we can let Z∗X(j) =
√
n(p̂∗j−p̂j) where p̂∗j = 1

n

∑N
i=1 1(X∗i = xj),

where (X∗1 , . . . , X
∗
n) are drawn from the empirical distribution of (X1, . . . , Xn).

Theorem C.2 (Bootstrap validity). Suppose the assumptions of Theorem C.1 hold

and that Assumption C.2 holds. Then,

ψ̂(Z∗) p
 ψ(Z)

as n→∞, where ψ̂ is defined by

ψ̂(Z∗) =
K∑
j=1

ŵ0(xj)p̂j

P̂(W0 = 1)âmax

Z∗a(j) − Ê[a(X) | W0 = 1]

â2
max

max
j∈Ψ̂X+

Z∗a(j)

+
K∑
j=1

(â(xj)− Ê[a(X) | W0 = 1])p̂j

P̂(W0 = 1)âmax

Z∗w0
(j)

+
K∑
j=1

(â(xj)− Ê[a(X) | W0 = 1])ŵ0(xj)

P̂(W0 = 1)âmax

Z∗X(j), (C.2)

where Ê[a(X) | W0 = 1] =
1
n

∑n
i=1 â(Xi)ŵ0(Xi)

1
n

∑n
i=1 ŵ0(Xi)

, P̂(W0 = 1) = 1
n

∑n
i=1 ŵ0(Xi), âmax =

maxi:ŵ0(Xi)>cn â(Xi), and

Ψ̂X+ =

{
k ∈ {1, . . . , K} : â(xk) ≥ max

i:ŵ0(Xi)>cn
â(Xi)− ξn

}
,

where ξn is a positive sequence satisfying ξn = o(1) and ξn
√
n→∞ as n→∞.

The proof of Theorem C.2 shows that Ψ̂X+ consistently estimates ΨX+ and thus

satisfies the conditions of Theorem 3.2 in Fang and Santos (2019). The bootstrap

procedure is valid whether the limiting distribution is Gaussian or not. If we assume

a(x) is maximized at a single value, standard bootstrap procedures can also be used

to approximate the limiting distribution of P̂ .
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We propose the following bootstrap procedure to compute a one-sided (1 − α)

confidence interval for P .

Algorithm C.1 (One-sided confidence interval for P ). We compute the confidence

interval in three steps:

1. Compute θ̂ and P̂ using the random sample {(Wi, Xi)}ni=1;

2. For bootstrap samples b = 1, . . . , B, compute θ̂∗,b = (â∗,b, ŵ∗,b0 , p̂∗,b) and Z∗,b =
√
n(θ̂∗,b − θ̂);

3. Compute q̂α, the α quantile of ψ̂(Z∗,b), and report the interval
[
0, P̂ − q̂α/

√
n
]
.

We could also view these inferential problems through the lens of intersection or

union bounds. For example, we can write

P (a,W0; Tall) = inf
x∈supp(X|W0=1)

E[a(X)w0(X)]

E[w0(X)] · a(x)
=: inf

x∈supp(X|W0=1)
P (x).

Computing a one-sided confidence interval for P (a,W0; Tall) of the kind [0, P̂
+

] can

be cast as doing inference on intersection bounds. Chernozhukov, Lee, and Rosen

(2013) offer methods for such problems. Equivalently, the computation of a one-sided

confidence interval [P̂
−
, 1] is related to inferential questions in union bounds: see Bei

(2024). We leave all details for future work.

D Proof of Theorem 4.2

We begin with a technical lemma that we use in the proof of Theorem 4.2.

Lemma D.1. Suppose Assumption 3.1 holds. Then,

1. The functions α 7→ E[Tµ1(Tµ < α) | W0 = 1] and α 7→ E[Tµ1(Tµ ≥ α) | W0 = 1]

are left-continuous.

2. The functions α 7→ E[Tµ1(Tµ > α) | W0 = 1] and α 7→ E[Tµ1(Tµ ≤ α) | W0 = 1]

are right-continuous.

Proof of Lemma D.1. The function α 7→ E[Tµ1(Tµ < α) | W0 = 1] is left-continuous if

for any strictly increasing sequence αn ↗ α we have that E[Tµ1(Tµ < αn) | W0 = 1]→
E[Tµ1(Tµ < α) | W0 = 1]. To see this holds, note that fn(t) := t1(t < αn)→ t1(t < α)

since t1(t < αn) = 0 for all t ≥ α, and t1(t < αn) = t whenever t < α for

sufficiently large n. The random variable |Tµ1(Tµ < αn)| is dominated by |Tµ| and
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E[|Tµ| | W0 = 1] < ∞ by Assumption 3.1 and by P(W0 = 1) > 0. Therefore, by

dominated convergence, E[Tµ1(Tµ < αn) | W0 = 1]→ E[Tµ1(Tµ < α) | W0 = 1] hence

E[Tµ1(Tµ < α) | W0 = 1] is left-continuous. The function α 7→ E[Tµ1(Tµ ≥ α) |
W0 = 1] is also left-continuous because E[Tµ1(Tµ ≥ α) | W0 = 1] = E[Tµ | W0 =

1]− E[Tµ1(Tµ < α) | W0 = 1]. The lemma’s second claim can be similarly shown by

considering a sequence αn ↘ α.

Proof of Theorem 4.2. We break down this proof into four cases.

Case 1: µ0 ∈ S(τ0;W0) and µ0 < E0

We want to maximize P(W ∗ = 1 | W0 = 1) over the subpopulationsW ∗ inW(a;W0, {τ0}).
Recall that W ∗ ∈ W(a;W0, {τ0}) if µ0 = µ(w∗, τ0) and W ∗ ∈ SP(W0) hold, where

w∗(X) = P(W ∗ = 1 | X,W0 = 1). Therefore,

P (a,W0; {τ0}) = max
W ∗∈W(a;W0,{τ0})

P(W ∗ = 1 | W0 = 1)

= max
W ∗∈{0,1}:µ0=µ(w∗,τ0),W ∗∈SP(W0)

E[w∗(X) | W0 = 1]

≤ max
W ∗∈{0,1}:µ0=µ(w∗,τ0)

E[w∗(X) | W0 = 1]

= max
w∗:µ0=µ(w∗,τ0),w∗(X)∈[0,1]

E[w∗(X) | W0 = 1].

We will first show a closed-form expression for an upper bound for P (a,W0; {τ0}).
Then, we will show that this upper bound can be attained by a corresponding

W+ ∈ W(a;W0, {τ0}), and therefore it equals P (a,W0; {τ0}).
Before proceeding, let α+ := inf{α ∈ R : R(α) ≥ 0} where R(α) := E[Tµ1(Tµ ≤

α) | W0 = 1]. By construction, α+ ≥ 0. By µ0 < E0 we also have that α+ <∞. By

Lemma D.1, R is a right-continuous function, and therefore R(α+) = limα↘α+ R(α) ≥
0. We now claim that α+ > 0. To show this claim, assume α+ = 0. Then, 0 ≤ R(α+) =

R(0) = E[Tµ1(Tµ ≤ 0) | W0 = 1] ≤ 0, which implies P(τ0(X) = µ0 | W0 = 1) = 1.

This is ruled out by the assumption that µ0 < E0 = E[τ0(X) | W0 = 1] = µ0.

Therefore, α+ > 0.

Second, we show an upper bound for P (a,W0; {τ0}). For all w∗ such that µ0 =
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µ(w∗, τ0) and w∗(X) ∈ [0, 1], we have that

E[w∗(X) | W0 = 1]

=
E[w∗(X)(α+ − Tµ) | W0 = 1]

α+
+

E[w∗(X)Tµ | W0 = 1]

α+

=
E[w∗(X)(α+ − Tµ) | W0 = 1]

α+

=
E[w∗(X)(α+ − Tµ)1(Tµ ≤ α+) | W0 = 1]

α+
+

E[w∗(X)(α+ − Tµ)1(Tµ > α+) | W0 = 1]

α+

≤ E[1 · (α+ − Tµ)1(Tµ ≤ α+) | W0 = 1]

α+
+

E[0 · (α+ − Tµ)1(Tµ > α+) | W0 = 1]

α+

= E[1(Tµ ≤ α+) | W0 = 1]− E[Tµ1(Tµ ≤ α+) | W0 = 1]

α+

=: P+.

The second equality follows from µ0 = µ(w∗, τ0). The inequality follows from {0, 1}
being lower/upper bounds for w∗(X). Therefore, P (a,W0; {τ0}) ≤ P+.

Third, and finally, we show this inequality is binding by findingW+ ∈ W(a;W0, {τ0})
such that P(W+ = 1 | W0 = 1) = P+.

We start by defining

w+(X) = 1(Tµ < α+) +

(
1− R(α+)1(P(Tµ = α+ | W0 = 1) 6= 0)

α+P(Tµ = α+ | W0 = 1)

)
1(Tµ = α+).

This function is bounded above by 1 because R(α+) ≥ 0 and α+ > 0. To show w+ is

bounded below by 0, consider cases where P(Tµ = α+ | W0 = 1) or R(α+) equal and

differ from 0. If P(Tµ = α+ | W0 = 1) = 0 or R(α+) = 0, then w+(X) ∈ {0, 1} and it

is therefore bounded below by 0. If P(Tµ = α+ | W0 = 1) > 0 and R(α+) > 0, then

1− R(α+)

α+P(Tµ = α+ | W0 = 1)
=
α+P(Tµ = α+ | W0 = 1)− E[Tµ1(Tµ ≤ α+) | W0 = 1]

α+P(Tµ = α+ | W0 = 1)

=
E[Tµ1(Tµ = α+) | W0 = 1]− E[Tµ1(Tµ ≤ α+) | W0 = 1]

α+P(Tµ = α+ | W0 = 1)

=
−E[Tµ1(Tµ < α+) | W0 = 1]

α+P(Tµ = α+ | W0 = 1)
.

By the definition of α+ as an infimum, we must have that R(α+− ε) < 0 for all ε > 0,

implying that R(α) is discontinuous at α+. By Lemma D.1, α 7→ E[Tµ1(Tµ < α) |
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W0 = 1] is left-continuous and satisfies E[Tµ1(Tµ < α) | W0 = 1] ≤ R(α). Therefore,

since R(α+−ε) < 0 for all ε > 0, we must have that E[Tµ1(Tµ < α+−ε) | W0 = 1] < 0

for all ε > 0. Letting ε ↘ 0 yields that E[Tµ1(Tµ < α+) | W0 = 1] ≤ 0. Therefore

−E[Tµ1(Tµ < α+) | W0 = 1]/(α+P(Tµ = α+ | W0 = 1)) ≥ 0 and w+(X) ≥ 0.

Next, we compute

E[w+(X) | W0 = 1]

= P(Tµ < α+ | W0 = 1) +

(
1− R(α+)1(P(Tµ = α+ | W0 = 1) 6= 0)

α+P(Tµ = α+ | W0 = 1)

)
P(Tµ = α+ | W0 = 1)

= P(Tµ ≤ α+ | W0 = 1)− E[Tµ1(Tµ ≤ α+) | W0 = 1]

α+
1(P(Tµ = α+ | W0 = 1) 6= 0)

= P(Tµ ≤ α+ | W0 = 1)− E[Tµ1(Tµ ≤ α+) | W0 = 1]

α+

= P+.

The indicator function disappears in the third equality because P(Tµ = α+ | W0 =

1) = 0 implies E[Tµ1(Tµ ≤ α+) | W0 = 1] = 0 as shown above.

We next verify µ(w∗, τ0) = µ0. This condition is equivalent to E[w+(X)Tµ | W0 =

1] = 0, which we verify here:

E[w+(X)Tµ | W0 = 1] = E[Tµ1(Tµ ≤ α+) | W0 = 1]

− R(α+)1(P(Tµ = α+ | W0 = 1) 6= 0)

α+P(Tµ = α+ | W0 = 1)
α+P(Tµ = α+ | W0 = 1)

= R(α+)−R(α+)1(P(Tµ = α+ | W0 = 1) 6= 0)

= R(α+)1(P(Tµ = α+ | W0 = 1) = 0).

Therefore, E[w+(X)Tµ | W0 = 1] equals 0 when R(α+) = 0. When R(α+) > 0, we

have that P(Tµ = α+ | W0 = 1) > 0 as shown earlier. So E[w+(X)Tµ | W0 = 1] is also

equal to 0 in this case.

We conclude by showing that w+(X) corresponds to P(W+ = 1 | X,W0 = 1) for

some W+ ∈ SP(W0). Let U ∼ Unif(0, 1) satisfy U ⊥⊥ (Y (1), Y (0), X,W0) and define

W+ =

(
1(Tµ < α+) + 1

(
Tµ = α+, U ≤ 1− R(α+)1(P(Tµ = α+ | W0 = 1) 6= 0)

α+P(Tµ = α+ | W0 = 1)

))
·W0.

By construction, W+ ∈ {0, 1}, P(W+ = 1 | X,W0 = 1) = w+(X), P(W0 = 1 |
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W+ = 1) = 1, and W+ ⊥⊥ (Y (1), Y (0)) | X,W0 = 1. Also, since µ0 ∈ S(τ0;W0),

P(Tµ ≤ 0 | W0 = 1) = P(τ0(X) ≤ µ0 | W0 = 1) > 0. Since α+ > 0 we have that

P(W+ = 1 | W0 = 1) ≥ P(Tµ < α+ | W0 = 1) ≥ P(Tµ ≤ 0 | W0 = 1) > 0. Therefore

W+ is a regular subpopulation of W0 for which P(W+ = 1 | W0 = 1) = P+, hence P+

is the maximum.

Case 2: µ0 ∈ S(τ0;W0) and µ0 > E0

As in Case 1, P (a,W0; {τ0}) ≤ maxw∗:µ(w∗,τ0)=µ0,w∗(X)∈[0,1] E[w∗(X) | W0 = 1].

Let α− = sup{α ∈ R : L(α) ≤ 0} where L(α) = E[Tµ1(Tµ ≥ α) | W0 = 1]. By

construction, α− ≤ 0 and by µ0 > E0 we have that α− > −∞. By Lemma D.1, L

is a left-continuous function, and therefore L(α−) = limα↗α− L(α) ≤ 0. Similarly to

Case 1, we can show that α− < 0.

We now show an upper bound for P (a,W0; {τ0}). For all w∗ such that µ(w∗, τ0) =

µ0 and w∗(X) ∈ [0, 1], we have that

E[w∗(X) | W0 = 1]

≤ E[1 · (α− − Tµ)1(Tµ ≥ α−) | W0 = 1]

α−
+

E[0 · (α− − Tµ)1(Tµ < α−) | W0 = 1]

α−

= E[1(Tµ ≥ α−) | W0 = 1]− E[Tµ1(Tµ ≥ α−) | W0 = 1]

α−

=: P−,

which follows a similar argument as above. This implies P (a,W0; {τ0}) ≤ P−. We

now show that this inequality is an equality by finding W− ∈ W(a;W0, {τ0}) such

that P(W− = 1 | W0 = 1) = P−. Let

w−(X) = 1(Tµ > α−) +

(
1− L(α−)1(P(Tµ = α− | W0 = 1) 6= 0)

α−P(Tµ = α− | W0 = 1)

)
1(Tµ = α−).

The rest of the proof symmetrically follows the one for the previous case.

Case 3: µ0 = E0 ∈ S(τ0;W0)

Since W ∗ = W0 ∈ SP(W0), we have that µ0 = E[Y (1) − Y (0) | W0 = 1] and thus

P(W ∗ = 1 | W0 = 1) is maximized at 1.

Case 4: µ0 /∈ S(τ0;W0)

By Theorem 3.2, there does not exist a regular subpopulation W ∗ satisfying µ0 =

E[Y (1)− Y (0) | W ∗ = 1] and therefore the supremum equals 0 by its definition.
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E Proofs for Section 5

Proof of Proposition 5.3. We begin by noting that

βTWFE =
1
T

∑T
t=1 E[D̈tYt]

1
T

∑T
t=1 E[D̈2

t ]
=

∑T
t=1 E[D̈tYt | P = t]P(P = t)∑T
t=1 E[D̈2

t | P = t]P(P = t)
=

E[D̈Y ]

E[D̈2]
,

where the second equality follows from the uniform distribution of P which is inde-

pendent from (D̈t, Yt) for all t ∈ {1, . . . , T}. The third equality follows from defining

D̈ := D̈P . We also note that

D̈ = DP −
1

T

T∑
s=1

Ds −
T∑
t=1

E[Dt]1(P = t) +
T∑
s=1

E[Ds]E[1(P = s)]

= D − 1

T

T∑
s=1

1(G ≤ s)− E[D | P ] + E[D]

= D − E[D | G]− E[D | P ] + E[D].

The third equality follows from E[D | G] = E[1(G ≤ P ) | G] = 1
T

∑T
s=1 1(G ≤ s) =

1
T

∑T
s=1Ds. We break down the rest of this proof into four steps.

Step 1: Splitting the Numerator in Two

We have that

E[D̈Y ] = E[D̈(Y (0) +D(Y (1)− Y (0)))]

= E[D̈E[Y (0) | G,P ]] + E[D̈DE[Y (1)− Y (0) | G,P ]].

The first equality follows from Y = Y (0) + D(Y (1) − Y (0)) and the second from

iterated expectations and E[D | G,P ] = D.

Step 2: First Numerator Term

We have that

E[D̈E[Y (0) | G,P ]] = E[D̈θ(G,P )] = E[D̈θ̈(G,P )],

where θ(G,P ) = E[Y (0) | G,P ]. The second equality follows by properties of
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projections and from defining θ̈(G,P ) as follows:

θ̈(G,P ) := θ(G,P )− E[θ(G,P ) | G]− E[θ(G,P ) | P ] + E[θ(G,P )]

= E[Y (0) | G,P ]− E[Y (0) | G]− E[Y (0) | P ] + E[Y (0)].

Then, we note that

θ̈(g′, t′) = E[Y (0) | G = g′, P = t′]− E[Y (0) | G = g′]− E[Y (0) | P = t′] + E[Y (0)]

= E[Yt′(0) | G = g′]− 1

T

T∑
t=1

E[Yt(0) | G = g′]

−
∑
g∈G

(
E[Yt′(0) | G = g]− 1

T

T∑
t=1

E[Yt(0) | G = g]

)
P(G = g)

=
1

T

T∑
t=1

E[Yt′(0)− Yt(0) | G = g′]− E

[
1

T

T∑
t=1

E[Yt′(0)− Yt(0) | G]

]
.

Assumption 5.3.2 implies that for any pair t, t′ ∈ {1, . . . , T} and any g′ ∈ G

E[Yt′(0)− Yt(0) | G = g′] = E[Yt′(0)− Yt(0)].

This can be shown for t′ > t by writing E[Yt′(0)− Yt(0) | G = g′] =
∑t′

s=t+1 E[Ys(0)−
Ys−1(0) | G = g′] =

∑t′

s=t+1 E[Ys(0)− Ys−1(0)] = E[Yt′(0)− Yt(0)]. Similar derivations

show this holds for t′ < t. The case where t′ = t is trivial. Therefore,

θ(g′, t′) =
1

T

T∑
t=1

E[Yt′(0)− Yt(0) | G = g′]− E

[
1

T

T∑
t=1

E[Yt′(0)− Yt(0) | G]

]

=
1

T

T∑
t=1

E[Yt′(0)− Yt(0)]− E

[
1

T

T∑
t=1

E[Yt′(0)− Yt(0)]

]
= 0

for all (g′, t′) ∈ G × {1, . . . , T}, which implies E[D̈E[Y (0) | G,P ]] = 0.

Step 3: Second Numerator Term
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We can write

D̈D = (D − E[D | G]− E[D | P ] + E[D])D

= (1− E[D | G]− E[D | P ] + E[D])P(D = 1 | G,P ) (E.1)

by D2 = D = E[D | G,P ]. Thus,

E[D̈DE[Y (1)− Y (0) | G,P ]]

= E[(1− E[D | G]− E[D | P ] + E[D])E[Y (1)− Y (0) | G,P,D = 1]P(D = 1 | G,P )].

Step 4: Denominator

In this step, we show that

E[D̈2] = E[D̈D] = E[(1− E[D | G]− E[D | P ] + E[D])P(D = 1 | G,P )].

The first equality is obtained from properties of linear projections and the second

follows from equation (E.1).

We conclude the proof by noting the equivalence of integrating over the distribution

of P and averages over time periods, which shows the equivalence between βTWFE, the

expression in Proposition 5.3, and

E[(1− E[D | G]− E[D | P ] + E[D]) · E[Y (1)− Y (0) | G,P,D = 1] · P(D = 1 | G,P )]

E[(1− E[D | G]− E[D | P ] + E[D]) · P(D = 1 | G,P )]
.

Proof of Proposition 5.4. Proposition 5.3 and P(D = 1 | G,P ) = D yields

βTWFE =
E[(1− E[D | G]− E[D | P ] + E[D]) ·D · E[Y (1)− Y (0) | G,P,D = 1]]

E[(1− E[D | G]− E[D | P ] + E[D]) ·D]
.

Since E[Y (1)− Y (0) | G,P,D = 1] = E[Y (1)− Y (0) | G,D = 1] by assumption, we

can use the law of iterated expectations to obtain

βTWFE =
E[E[(1− E[D | G]− E[D | P ] + E[D]) ·D | G] · E[Y (1)− Y (0) | G,D = 1]]

E[E[(1− E[D | G]− E[D | P ] + E[D]) ·D | G]]
.

We now calculate the conditional expectation E[(1− E[D | G]− E[D | P ] + E[D]) ·
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D | G = g] for g ∈ G. If g = +∞, then this conditional expectation is 0 by

construction, so we focus on the case where g ∈ {2, . . . , T}. For these derivations, we

let FG(p) := P(G ≤ p) denote the cdf of G at p. We have that:

E[(1− E[D | G]− E[D | P ] + E[D])D | G = g]

= E[D | G = g]

(
1− E[D | G = g]− E[E[D | P ]D | G = g]

E[D | G = g]
+ E[D]

)
= E[D | G = g]

(
1− E[1(G ≤ P ) | G = g]− E[FG(P )1(G ≤ P ) | G = g]

E[1(G ≤ P ) | G = g]

+ E[E[1(G ≤ P ) | P ]])

= E[D | G = g]

(
1− E[1(g ≤ P )]− E[FG(P )1(g ≤ P )]

E[1(g ≤ P )]
+ E[FG(P )]

)
= E[D | G = g] (1− E[1(g ≤ P )]− E[FG(P ) | g ≤ P ]

+ E[FG(P ) | g ≤ P ]E[1(g ≤ P )] + E[FG(P ) | g > P ]E[1(g > P )])

= E[D | G = g]E[1(g > P )](1 + E[FG(P ) | g > P ]− E[FG(P ) | g ≤ P ])

= E[D | G = g](1− E[D | G = g])(1 + E[D | g > P ]− E[D | g ≤ P ])

= P(D = 1 | G = g) · P(D = 0 | G = g) · (P(D = 1 | P < g) + P(D = 0 | P ≥ g)).

The first equality follows from E[D | G = g] > 0 for g ∈ {2, . . . , T}, the second from

D = 1(G ≤ P ) and the law of iterated expectations, the third from G ⊥⊥ P , the

fourth from the law of iterated expectations, the fifth from combining terms, the sixth

from the law of iterated expectations again, and the last line is obtained by the fact

that D ∈ {0, 1}. The representation in Proposition 5.4 follows.

F Proofs for Appendix B

Proof of Proposition B.1. By Theorem 3.1, µ(a, τ0) has a uniform causal representa-

tion in Tall if and only if a(xk) ≥ 0 for k ∈ {1, . . . , K}. Therefore, it is sufficient to show

the equivalence between weakly causal estimands and estimands with nonnegative

weights. A similar result was shown in Proposition 4 of BBMT, but we nevertheless

provide a proof here to account for the slight differences in notation.

Suppose µ(a, τ0) is weakly causal. Let ν1 = (1(a(x1) < 0), . . . ,1(a(xK) < 0)) and

ν0 = 0K . Trivially, (ν1, ν0) ∈ Mall and τ− := ν1 − ν0 ∈ Tall, where τ− ≥ 0K . Since
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µ(a, τ0) is weakly causal, µ(a, τ−) ≥ 0 where

µ(a, τ−) =
E[a(X)τ−(X) | W0 = 1]

E[a(X) | W0 = 1]

=
1

E[a(X) | W0 = 1]

K∑
k=1

a(xk)1(a(xk) < 0)P(X = xk | W0 = 1) ≥ 0.

This implies a(xk) ≥ 0 for all k ∈ {1, . . . , K}. Thus, µ(a, τ0) has a uniform causal

representation in Tall.

Now suppose µ(a, τ0) has a uniform causal representation in Tall, or that a(xk) ≥ 0

for k ∈ {1, . . . , K}. Then, for any (ν0, ν1) ∈Mall such that τ := ν1 − ν0 ≥ 0K ,

µ(a, τ) =
1

E[a(X) | W0 = 1]

K∑
k=1

a(xk)τ(xk)P(X = xk | W0 = 1) ≥ 0.

The inequality holds because a(xk) and τ(xk) are nonnegative for all k ∈ {1, . . . , K}.
This last inequality is reversed if we instead assume that τ ≤ 0K . Thus, µ(a, τ0) is

weakly causal.

G Proofs for Appendix C

We use the following lemma in the proof of Theorem C.1.

Lemma G.1. Let θ = (θ(1), . . . , θ(K)) ∈ RK and define the mapping φ : RK → R
by φ(θ) = maxj∈{1,...,K} θ(j). Then, φ is Hadamard directionally differentiable for all

θ ∈ RK tangentially to RK with directional derivative at θ in direction h ∈ RK

φ′θ(h) = max
j∈arg maxk∈{1,...,K} θ(k)

h(j).

Proof of Lemma G.1. Let hn → h ∈ RK and tn ↘ 0 as n→∞. Then,

t−1
n (φ(θ + tnhn)− φ(θ)) = t−1

n

(
max

k∈{1,...,K}
(θ(k) + tnhn(k))− max

k∈{1,...,K}
θ(k)

)
.

Let Θmax = {j ∈ {1, . . . , K} : θ(j) = maxk∈{1,...,K} θ(k)} and let jmax be an element of
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Θmax. Then, maxk∈{1,...,K} θ(k) = θ(jmax) and thus

φ(θ + tnhn)− φ(θ)

tn
= max

{
θ(1)− θ(jmax)

tn
+ hn(1), . . . ,

θ(K)− θ(jmax)

tn
+ hn(K)

}
.

For each j ∈ Θmax, (θ(j) − θ(jmax))/tn + hn(j) = hn(j) → h(j). For each j /∈ Θmax,

(θ(j) − θ(jmax))/tn → −∞ since θ(j) − θ(jmax) < 0 and tn ↘ 0. Therefore, by

continuity of the maximum operator in its arguments, t−1
n (φ(θ + tnhn) − φ(θ)) →

maxj∈Θmax h(j).

Proof of Theorem C.1. We begin by showing the consistency of P̂ for P .

Part 1: Consistency

The estimator 1
n

∑n
i=1 â(Xi)ŵ0(Xi) is consistent for E[a(X)w0(X)] since its components

are assumed consistent by Assumption C.1, and by the continuous mapping theorem.

The consistency of 1
n

∑n
i=1 ŵ0(Xi) for E[w0(X)] is similarly established.

We now consider the maximum term in the denominator. We can write

max
i:ŵ0(Xi)>cn

â(Xi) = max
x: 1

n

∑n
i=1 1(Xi=x)>0,ŵ0(x)>cn

â(x).

Let X+ := supp(X | W0 = 1) = {x ∈ supp(X) : w0(x) > 0} and let X̂+ = {x :
1
n

∑n
i=1 1(Xi = x) > 0, ŵ0(x) > cn}. We first show that P(X̂+ = X+)→ 1 as n→∞.

To see this, first consider xj ∈ X+. Then,

P(xj ∈ X̂+) = P

({
1

n

n∑
i=1

1(Xi = xj) > 0

}
∩ {ŵ0(xj) > cn}

)

≥ P

(
1

n

n∑
i=1

1(Xi = xj) > 0

)
+ P (ŵ0(xj) > cn)− 1,

following an application of Bonferroni’s inequality.

We have that P( 1
n

∑n
i=1 1(Xi = xj) > 0)→ 1 since 1

n

∑n
i=1 1(Xi = xj)

p−→ pj > 0.

We also have that P(ŵ0(xj) > cn) = P(ŵ0(xj)− cn > 0)→ 1 because ŵ0(xj)− cn
p−→

w0(xj) > 0 by cn = o(1) and w0(xj) > 0, which follows from xj ∈ X+. Therefore,

P(xj /∈ X̂+) = 1 − P(xj ∈ X̂+) ≤ 1 − (P( 1
n

∑n
i=1 1(Xi = xj) > 0) + P(ŵ0(xj) >

cn)− 1)→ 0 as n→∞.
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Now let xj /∈ X+. Then

P(xj /∈ X̂+) = P

({
1

n

n∑
i=1

1(Xi = xj) = 0

}
∪ {ŵ0(xj) ≤ cn}

)
≥ P(ŵ0(xj) ≤ cn) = P(

√
nŵ0(xj) ≤

√
ncn).

By Assumption C.1,
√
nŵ0(xj) =

√
n(ŵ0(xj) − w0(xj))

d−→ Zw0(j) = Op(1), since

w0(xj) = 0 for xj /∈ X+. Also
√
ncn → +∞ by the theorem’s assumption. Therefore,

P(
√
nŵ0(xj) ≤

√
ncn)→ 1 and P(xj ∈ X̂+)→ 0 as n→∞. Because of this,

P(X̂+ = X+) = P

 ⋂
xj∈X+

{xj ∈ X̂+} ∩
⋂

xj /∈X+

{xj /∈ X̂+}


= 1− P

 ⋃
xj∈X+

{xj /∈ X̂+} ∪
⋃

xj /∈X+

{xj ∈ X̂+}


≥ 1−

 ∑
j:xj∈X+

P(xj /∈ X̂+) +
∑

j:xj /∈X+

P(xj ∈ X̂+)


→ 1− 0 = 1.

Thus, we obtain P
(
maxx∈X̂+ â(x) = maxx∈X+ â(x)

)
≥ P(X̂+ ∈ X+)→ 1, which yields

max
i:ŵ0(Xi)>cn

â(Xi) = max
x∈X̂+

â(x) = max
x∈X+

â(x) + op(1).

By the consistency of â for a, the continuity of the maximum operator, and the con-

tinuous mapping theorem, maxx∈X+ â(x)
p−→ maxx∈X+ a(x). Because X+ = supp(X |

W0 = 1) is a finite set, we also have that maxx∈X+ a(x) = sup(supp(a(X) | W0 = 1)).

Another application of the continuous mapping theorem suffices to show that P̂ is

consistent for P .

Part 2: Asymptotic Distribution

We first establish the joint limiting distribution of terms (i)
√
n( 1

n

∑n
i=1 â(Xi)ŵ0(Xi)−

E[a(X)w0(X)]), (ii)
√
n( 1

n

∑n
i=1 ŵ0(Xi)−E[w0(Xi)]), and (iii)

√
n(maxi:ŵ0(Xi)>cn â(Xi)−
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maxx∈X+ a(x)). The terms (i) and (ii) can be expanded as follows:

√
n

(
1

n

n∑
i=1

â(Xi)ŵ0(Xi)− E[a(X)w0(X)]

)

=
√
n

(
K∑
j=1

â(xj)ŵ0(xj)p̂j −
K∑
j=1

a(xj)w0(xj)pj

)

=
K∑
j=1

w0(xj)pj
√
n(â(xj)− a(xj)) +

K∑
j=1

a(xj)pj
√
n(ŵ0(xj)− w0(xj))

+
K∑
j=1

a(xj)w0(xj)
√
n(p̂j − pj)) + op(1) (G.1)

and

√
n

(
1

n

n∑
i=1

ŵ0(Xi)− E[w0(X)]

)
=
√
n

(
K∑
j=1

ŵ0(xj)p̂j −
K∑
j=1

w0(xj)pj

)

=
K∑
j=1

(
pj
√
n(ŵ0(xj)− w0(xj)) + w0(xj)

√
n(p̂j − pj)

)
+ op(1). (G.2)

For term (iii), we use the expansion

√
n

(
max

i:ŵ0(Xi)>cn
â(Xi)− max

x∈X+
a(x)

)
=
√
n

(
max

i:ŵ0(Xi)>cn
â(Xi)− max

x∈X+
â(x)

)
(G.3)

+
√
n

(
max
x∈X+

â(x)− max
x∈X+

a(x)

)
. (G.4)

The term in (G.3) is of order op(1) because

P
(√

n

(
max

i:ŵ0(Xi)>cn
â(Xi)− max

x∈X+
â(x)

)
= 0

)
= P

(
max
x∈X̂+

â(x) = max
x∈X+

â(x)

)
≥ P(X̂+ ∈ X+)→ 1,

as shown earlier.

The term in (G.4) can be analyzed using Theorem 2.1 in Fang and Santos (2019),

which generalizes the delta method to the class of Hadamard directionally differentiable
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functions. Using Lemma G.1, we have that

√
n

(
max
x∈X+

â(x)− max
x∈X+

a(x)

)
= max

xj∈arg maxx∈X+ a(x)

√
n (â(xj)− a(xj)) + op(1)

=: max
j∈ΨX+

√
n (â(xj)− a(xj)) + op(1). (G.5)

Combining the expressions in (G.1), (G.2), and (G.5) with the delta method yields

√
n(P̂ − P ) =

1

P(W0 = 1) maxx∈X+ a(x)

K∑
j=1

(
w0(xj)pj

√
n(â(xj)− a(xj))

+a(xj)pj
√
n(ŵ0(xj)− w0(xj)) + a(xj)w0(xj)

√
n(p̂j − pj)

)
− E[a(X) | W0 = 1]

P(W0 = 1) maxx∈X+ a(x)

K∑
j=1

(
pj
√
n(ŵ0(xj)− w0(xj)) + w0(xj)

√
n(p̂j − pj)

)
− E[a(X) | W0 = 1]

maxx∈X+ a(x)2
max
j∈ΨX+

√
n (â(xj)− a(xj)) + op(1)

= ψ(
√
n(â− a),

√
n(ŵ0 −w0),

√
n(p̂− p)) + op(1)

d−→ ψ(Z)

by the continuity of ψ and Assumption C.1.

Proof of Theorem C.2. We verify the validity of the bootstrap by appealing to The-

orem 3.2 in Fang and Santos (2019). We show that their Assumption 4 holds by

showing the mapping ψ̂ satisfies |ψ̂(h′)− ψ̂(h)| ≤ Cn‖h′ − h‖ for any h′, h ∈ R3K and

for Cn = Op(1), and by showing that ψ̂(h)
p−→ ψ(h) for all h ∈ R3K .

Let h = (h1, h2, h3) and h′ = (h′1, h
′
2, h
′
3).

|ψ̂(h′)− ψ̂(h)| ≤

∣∣∣∣∣
K∑
j=1

ŵ0(xj)p̂j

P̂(W0 = 1) maxi:ŵ0(Xi)>cn â(Xi)
(h′1(j)− h1(j))

∣∣∣∣∣
+

∣∣∣∣∣ Ê[a(X) | W0 = 1]

maxi:ŵ0(Xi)>cn â(Xi)2

(
max
j∈Ψ̂X+

h′1(j)− max
j∈Ψ̂X+

h1(j)

)∣∣∣∣∣
+

∣∣∣∣∣
K∑
j=1

(â(xj)− Ê[a(X) | W0 = 1])p̂j

P̂(W0 = 1) maxi:ŵ0(Xi)>cn â(Xi)
(h′2(j)− h2(j))

∣∣∣∣∣
+

∣∣∣∣∣
K∑
j=1

(â(xj)− Ê[a(X) | W0 = 1])ŵ0(xj)

P̂(W0 = 1) maxi:ŵ0(Xi)>cn â(Xi)
(h′3(j)− h3(j))

∣∣∣∣∣
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≤

(
K∑
j=1

ŵ0(xj)
2p̂2
j

P̂(W0 = 1)2 maxi:ŵ0(Xi)>cn â(Xi)2

)1/2

‖h′1 − h1‖ (G.6)

+
|Ê[a(X) | W0 = 1]|

maxi:ŵ0(Xi)>cn â(Xi)2

∣∣∣∣∣ max
j∈Ψ̂X+

h′1(j)− max
j∈Ψ̂X+

h1(j)

∣∣∣∣∣ (G.7)

+

(
K∑
j=1

(â(xj)− Ê[a(X) | W0 = 1])2p̂2
j

P̂(W0 = 1)2 maxi:ŵ0(Xi)>cn â(Xi)2

)1/2

‖h′2 − h2‖ (G.8)

+

(
K∑
j=1

(â(xj)− Ê[a(X) | W0 = 1])2ŵ0(xj)
2

P̂(W0 = 1)2 maxi:ŵ0(Xi)>cn â(Xi)2

)1/2

‖h′3 − h3‖, (G.9)

where we applied the Cauchy–Schwarz inequality several times. Note that the maxi-

mum function is Lipschitz with Lipschitz constant one and therefore∣∣∣∣∣ max
j∈Ψ̂X+

h′1(j)− max
j∈Ψ̂X+

h1(j)

∣∣∣∣∣ ≤ ∑
j∈Ψ̂X+

|h′1(j)− h1(j)|

≤
K∑
j=1

|h′1(j)− h1(j)|

≤
√
K‖h′1 − h1‖.

Combining equations (G.6)–(G.9) with the consistency of (â, ŵ0, p̂) established in

Theorem C.1 shows that |ψ̂(h′) − ψ̂(h)| ≤ Cn‖h′ − h‖ for any h′, h ∈ R3K and

for Cn = Op(1). Therefore, by Remark 3.4 in Fang and Santos (2019), showing

ψ̂(h)
p−→ ψ(h) for all h ∈ R3K suffices.

Thus we now consider the consistency of the different components of ψ̂(h). Applying

Theorem C.1 and the continuous mapping theorem, we can show that terms(
K∑
j=1

ŵ0(xj)p̂j

P̂(W0 = 1) maxi:ŵ0(Xi)>cn â(Xi)
h1(j),

Ê[a(X) | W0 = 1]

maxi:ŵ0(Xi)>cn â(Xi)2
,

K∑
j=1

(â(xj)− Ê[a(X) | W0 = 1])p̂j

P̂(W0 = 1) maxi:ŵ0(Xi)>cn â(Xi)
h2(j),

K∑
j=1

(â(xj)− Ê[a(X) | W0 = 1])ŵ0(xj)

P̂(W0 = 1) maxi:ŵ0(Xi)>cn â(Xi)
h3(j)

)
,

are all consistent for their counterparts in ψ(h). It remains to show that maxj∈Ψ̂X+
h1(j) =

maxj∈ΨX+ h1(j) + op(1). This holds if the set Ψ̂X+ is consistent for ΨX+ , which we
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establish here. Let k ∈ ΨX+ . Then,

P(k ∈ Ψ̂X+) = P
(
â(xk) ≥ max

j∈X̂+

â(xj)− ξn
)

= P
(√

n(â(xk)− max
j∈X̂+

â(xj)) ≥ −
√
nξn

)
= P

(√
n(max

j∈X+
â(xj)− max

j∈X̂+

â(xj)) ≥ −
√
nξn

)
.

The third equality follows from k ∈ ΨX+ . By the proof of Theorem C.1,
√
n(maxj∈X+ â(xj)−

maxj∈X̂+ â(xj)) = op(1). Since −
√
nξn → −∞, P(k ∈ Ψ̂X+)→ P(0 ≥ −∞) = 1 when

k ∈ ΨX+ .

Now suppose that k /∈ ΨX+ . Then,

P(k ∈ Ψ̂X+) = P(â(xk) ≥ max
j∈X̂+

â(xj)− ξn)→ P(a(xk) ≥ max
j∈X+

a(xj)− 0) = 0,

where the last equality holds from k /∈ ΨX+ . Therefore, P(Ψ̂X+ = ΨX+) → 1 as

n→∞. This implies ψ̂(h)
p−→ ψ(h), which concludes the proof.

H Additional Derivations for Difference-in-Differences

Goodman-Bacon (2021) provides the following representation of the two-way fixed

effects estimand under the assumption that group-time average treatment effects are

constant over time:

βTWFE =
∑

k: var(D|G=k)>0

[
k−1∑
j=1

σkjk +
K∑

j=k+1

σkkj

]
· E[Y (1)− Y (0) | G = k,D = 1],

where

σkjk =
P(G = j) · P(G = k) · P(D = 1 | G = k) ·

[
P(D = 1 | G = j)− P(D = 1 | G = k)

]
var(D⊥(Gt1 ,...,GtK−1

,P1,...,PT ))

and

σkkj =
P(G = j) · P(G = k) ·

[
1− P(D = 1 | G = k)

][
P(D = 1 | G = k)− P(D = 1 | G = j)

]
var(D⊥(Gt1 ,...,GtK−1

,P1,...,PT ))
.
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Here A⊥B is used to denote the residual in the linear projection of A on (1, B). It

is also the case that
∑

k: var(D|G=k)>0

∑
l>k

(
σkkl + σlkl

)
= 1.3 When we compare this

representation with Proposition 5.4, that is,

βTWFE =
E[aTWFE,H(G) · P(D = 1 | G) · τ0(G)]

E[aTWFE,H(G) · P(D = 1 | G)]

=

∑
k: var(D|G=k)>0 P(G = k) · aTWFE,H(k) · P(D = 1 | G = k) · τ0(k)∑

k: var(D|G=k)>0 P(G = k) · aTWFE,H(k) · P(D = 1 | G = k)
,

where τ0(k) = E[Y (1)− Y (0) | G = k,D = 1], it becomes clear that, for each group k

other than the always treated and the never treated,

aTWFE,H(k) · P(D = 1 | G = k)

=
k−1∑
j=1

P(G = j) · P(D = 1 | G = k) ·
[
P(D = 1 | G = j)− P(D = 1 | G = k)

]
+

K∑
j=k+1

P(G = j) ·
[
1− P(D = 1 | G = k)

][
P(D = 1 | G = k)− P(D = 1 | G = j)

]
,

and this, in turn, implies that

aTWFE,H(k)

=
k−1∑
j=1

P(G = j) ·
[
P(D = 1 | G = j)− P(D = 1 | G = k)

]
+

K∑
j=k+1

P(G = j) ·
[
P(D = 1 | G = k)− P(D = 1 | G = j)

]
· 1− P(D = 1 | G = k)

P(D = 1 | G = k)
.

(H.1)

3The result in Goodman-Bacon (2021) technically also includes a weight σkU attached to the
contrast between group k and the never-treated group. We subsume this weight under σk

kj , and

likewise subsume the weight on the contrast with the always-treated group under σk
jk.
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Equivalence of Weight Functions

We now show that the weights obtained in equation (H.1) are equivalent to those in

Proposition 5.4. First, we rewrite the weights in (H.1) as follows:

aTWFE,H(k)

=
k−1∑
j=1

P(G = j) ·
[
P(D = 1 | G = j)− P(D = 1 | G = k)

]
+

K∑
j=k+1

P(G = j) ·
[
P(D = 1 | G = k)− P(D = 1 | G = j)

]
· 1− P(D = 1 | G = k)

P(D = 1 | G = k)

= P(D = 1, G < k)− P(G < k)E[D | G = k] + (1− E[D | G = k])P(G > k)

− 1− E[D | G = k]

E[D | G = k]
P(D = 1, G > k)

= P(D = 1, G < k)− P(G < k)E[D | G = k] + P(G > k)− E[D | G = k]P(G > k)

− 1

E[D | G = k]
P(D = 1, G > k) + P(D = 1, G > k)

= P(D = 1, G 6= k)− E[D | G = k]P(G 6= k) + P(G > k)

(
1− E[D | G > k]

E[D | G = k]

)
= (E[D]− E[D | G = k]P(G = k))− E[D | G = k]P(G 6= k)

+ P(G > k)

(
1− E[D | G > k]

E[D | G = k]

)
= E[D]− E[D | G = k] + P(G > k)

(
1− E[D | G > k]

E[D | G = k]

)
.

For k ∈ {2, . . . , T}, the weights in Proposition 5.4 are equal to

E[1− E[D | G]− E[D | P ] + E[D] | G = k] = 1− E[D | G = k]− E[D | P ≥ k] + E[D],

(H.2)

because they are the average of the weights in Proposition 5.3 conditional on G = k.

The proof of Proposition 5.4 explicitly shows that

E[1− E[D | G]− E[D | P ] + E[D] | G = k]

= P(D = 0 | G = k) · (P(D = 0 | P ≥ k) + P(D = 1 | P < g)).
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Let us look at the difference between the weights in (H.1) and (H.2). Fix k ∈ {2, . . . , T}
and write:

(1− E[D | G = k]− E[D | P ≥ k] + E[D])

−
(
E[D]− E[D | G = k] + P(G > k)

(
1− E[D | G > k]

E[D | G = k]

))
= 1− E[D | P ≥ k]− P(G > k) +

E[D1(G > k)]

E[D | G = k]

= E[1(G ≤ k)]− E[D1(P ≥ k)]

E[1(P ≥ k)]
+

E[D1(G > k)]

E[1(k ≤ P )]

=
1

E[1(k ≤ P )]
(FG(k)E[1(k ≤ P )] + E[D1(G > k)]− E[D1(P ≥ k)])

=
1

E[1(k ≤ P )]
(FG(k)E[1(k ≤ P )] + E[1(k < G ≤ P )]− E[E[D | P ]1(P ≥ k)])

=
1

E[1(k ≤ P )]
(FG(k)E[1(k ≤ P )] + E[E[1(k < G ≤ P ) | P ]]− E[FG(P )1(P ≥ k)])

=
1

E[1(k ≤ P )]
(FG(k)E[1(k ≤ P )] + E[(FG(P )− FG(k))1(P ≥ k)]− E[FG(P )1(P ≥ k)])

=
1

E[1(k ≤ P )]
(FG(k)E[1(k ≤ P )] + E[FG(P )1(P ≥ k)]− FG(k)E[1(P ≥ k)]

−E[FG(P )1(P ≥ k)])

= 0.

Therefore, the weights in Proposition 5.4 and equations (H.1) and (H.2) are all equal

to one another.

References

Andrews, I., J. Roth, and A. Pakes (2023): “Inference for Linear Conditional Moment

Inequalities,” Review of Economic Studies, 90, 2763–2791.

Bei, X. (2024): “Inference on Union Bounds with Applications to DiD, RDD, Bunching,

and Structural Counterfactuals,” working paper.

Blandhol, C., J. Bonney, M. Mogstad, and A. Torgovitsky (2022): “When Is

TSLS Actually LATE?,” NBER Working Paper No. 29709.

Chernozhukov, V., S. Lee, and A. M. Rosen (2013): “Intersection Bounds: Estimation

and Inference,” Econometrica, 81, 667–737.

Cho, J., and T. M. Russell (2024): “Simple Inference on Functionals of Set-Identified

24



Parameters Defined by Linear Moments,” Journal of Business & Economic Statistics, 42,

563–578.

Cox, G., and X. Shi (2023): “Simple Adaptive Size-Exact Testing for Full-Vector and

Subvector Inference in Moment Inequality Models,” Review of Economic Studies, 90,

201–228.

Fang, Z., and A. Santos (2019): “Inference on Directionally Differentiable Functions,”

Review of Economic Studies, 86, 377–412.

Fang, Z., A. Santos, A. M. Shaikh, and A. Torgovitsky (2023): “Inference for

Large-Scale Linear Systems with Known Coefficients,” Econometrica, 91, 299–327.

Goodman-Bacon, A. (2021): “Difference-in-Differences with Variation in Treatment

Timing,” Journal of Econometrics, 225, 254–277.

Hong, H., and J. Li (2018): “The Numerical Delta Method,” Journal of Econometrics,

206, 379–394.

25


