ONLINE APPENDIX FOR
“ABADIE’S KAPPA AND WEIGHTING ESTIMATORS OF THE LLOCAL AVERAGE

TREATMENT EFFECT”

TymoN StoczyKskI, S. DERYA UysaL, AND JEFFREY M. WOOLDRIDGE

Review of Recent Empirical Applications. In Section 1 in the main text, we included the
following statement: “Our application of weighting to estimate the LATE appears to be somewhat
rare in practice, although Abadie’s (2003) result is more commonly used to estimate mean char-
acteristics of compliers, as also recommended by Angrist and Pischke (2009). We analyze two
samples of applications of instrumental variables to verify this claim. First, our reading of the 30
papers replicated by Young (2022), each of which uses 2SLS, suggests that none of these papers
uses weighting estimators of the LATE or applies Abadie’s (2003) result for any other purpose.
Second, we have also examined whether any of the papers published in journals of the American
Economic Association in 2019 and 2020 consider weighting estimators of the LATE. Our best
assessment is that the answer is likewise negative. Still, Marx and Turner (2019), Goodman et al.
(2020), Leung and O’Leary (2020), and Londofio-Vélez et al. (2020) apply Abadie’s (2003) result
to estimate mean characteristics of compliers, while Cohodes (2020) uses this result to estimate
the control complier mean (CCM), a parameter introduced by Katz et al. (2001).” In what follows,
we briefly explain how we reached these conclusions.

To examine whether any of the papers published in journals of the American Economic As-
sociation in 2019 and 2020 consider weighting estimators of the LATE, we first searched for the
string “instrument” in the main text of each such paper. We retained every paper where this string
appeared at least once and it was not immediately clear that the context in which it appeared had
nothing to do with instrumental variables (e.g., financial instruments, Texas Instruments).

For every paper that was retained in the search described above and additionally for every paper
replicated by Young (2022), we subsequently verified whether it cited any single-authored papers

by Alberto Abadie, Markus Frolich, or Zhiqiang Tan, and whether any of the following strings



appeared in its main text: “propensity score,” “IPW,” or “weighting.” In the case of any such
citation and any appearance of any of these strings, we subsequently read the relevant part of the
paper to determine whether Abadie’s (2003) result and/or weighting estimators of the LATE may
have been used. Our statement in Section 1 in the main text, also restated above, summarizes our

conclusions from this exercise.

Proof of Proposition 3.2. We begin with the case of translation invariance. For 7,, we can
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-1 -1
N Z; N (Y+k)Z; N 1-7; N Y+k)(1-Z)
[Zizl _)'(A ] Zizl X)) [Zizl 1— ;‘( ] Zi:l (X))
%u (Y + k, W) — p(Xi) : p(Xi) p(Xi) 1 p(Xi)
N Z |~ N DiZi _ N 1-7; |~ N D;(1-Z)
[Zi:l P(Xi)] Zi:l 0.9 [Zi:l 1—P(Xi)] Zi:l 1-p(X:)

-1 -1
N Z; N kZi N 1-Z; N k(1-Z)
[Zi:l P(Xi)] Zi:l p(Xi) [Zi:l l—P(Xi)] Zi:l 1-p(Xi)

—1 -1
N Z; N DiZ _ N 1-7Z; N D;(1-Z)
[Zi:l P(Xi)] Zi:l p(Xi) [Zi:l l—P(Xi)] Zi:l 1-p(X:)

7, (Y, W) +

7, (Y, W),

which means that 7, is indeed translation invariant. Similarly,
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which means that 7, 1 is translation invariant, too. On the other hand, we can write
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zero in finite samples, which means that 7, 7,1, and 7,, respectively, are not translation invariant.

We next turn to the case of scale equivariance. Begin by denoting —%— p(X) = w; and ——4-

1=p(X)) (X) = Wjp.

Then, for 7,, we can write
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which means that 7, is indeed scale equivariant. Similarly,
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which means that 7, 19 is scale equivariant, too. On the other hand, we can write
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Even though (a3 — a™ @3) ([Zﬁl KiO] [ZL Kil] - 1), (3 — a"a3) (1 - [Zfil Ku] [Zﬁil Kio]),
-1 -1
and (a3 — a¥@3) ([Zfil K,'] [Z?Ll Kl-]] - [Zf\il Ki] [Zﬁl Kio]) are all 0,(1), none of these objects
is generally equal to zero in finite samples, which means that 7, 7,1, and 7,, respectively, are not

scale equivariant.

Proof of Proposition 3.5. The sample moment conditions in equation (9) in the main text can

be written as

N
_ Zi — pen(Xi)
N~! E X; =
Den(Xi) (1 = pep(X3))
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If X includes a constant, then one of these moment conditions is N™' 3~ Pb(i;([;——béxb)(x)) = 0, and
this, together with Remark 2.2, guarantees that N™' YN, &, = N™' $¥ | ko, where &; and &, use the
covariate-balancing instrument propensity score, p.,(X). If N7! Zﬁil Ri = N7 Zfil Kio, then it is
also the case that < (= %2{’1), #¢b | and %Zf’lo are numerically identical to each other. They are also

a,0°

identical to #<* following the result in Heiler (2022), which says that <" is identical to #<°.

Asymptotic Derivations. As stated in Section 3.6 in the main text, all the weighting estimators
considered in this paper can be represented as an M-estimator. Thus, for the asymptotic distribu-
tions of each estimator, we can rely on the results regarding the asymptotics of the M-estimator.
The M-estimator, denoted as 8, for 6, a K x 1 unknown parameter vector, can be derived as the

solution to the sample moment equation
N
N w00 =0,
i=1

where O, is the observed data. Thus, 8 is the estimator of 6 that satisfies the population relation

E[¢(0,0)] = 0.! Under standard regularity conditions® and assuming that the relevant moments

o(0,0)
0¢

exist, i.e. E [ ] exists and is nonsingular, and E [y/(O, 0)y/(O, 6)'] exists and is finite, the asymp-

ISee, for example, Wooldridge (2010) and Boos and Stefanski (2013) for more on M-estimation.
>Theorem 7.2 in Boos and Stefanski (2013) states the conditions for the asymptotic normality of M-estimators. A
more general treatment of these regularity conditions can be found in Newey and McFadden (1994).



totic distribution of an M-estimator is given by
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We use different combinations of moment functions listed in Table A.1 for each of the weight-

ing estimators. For example, if 7y arg 1S estimated by %Z’l , then
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is used as the vector of moment functions. Under standard regularity conditions for M-estimation,
all of the LATE estimators discussed above will be asymptotically normal with different asymptotic
variances. A joint estimation of @ and 7y arg allows us to conduct inference based on the asymp-
totic variance-covariance matrix of an M-estimator given in (A.1) without explicitly deriving the
asymptotic distribution of 7 arg. At the same time, the M-estimation framework also facilitates the
derivations of the asymptotic variance terms for each of the LATE estimators. In what follows, we
provide asymptotic distributions of all the estimators discussed in the body of the paper.

We first introduce some additional notation in order to simplify the representation of the asymp-
totic variances. Let us denote the population counterpart of the numerator of the estimators 7,, 7,

(= 11), a0, and 7, by A, ie.,

E[Y Z=pX ] (A2)

p(X) (1 = p(X))

Recall that the expectation on the right hand side is equal to E [(x; — ko) Y]; see equation (2) in the



main text. Next, denote E(x;Y) and E(xoY) by A; and Ay, respectively. Alternatively, we can write

the expectation in equation (A.2) as follows:
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We denote E [[%] by u; and E [IYEIP_OZ(;] by uo. Symmetrically, we denote E [[%] and E [?_(;g]
by m; and my. Additionally, the population proportion of compliers is denoted by I', I'y, or Iy,
depending on which sample mean is used to estimate the population parameter, i.e., I' = E(x),
Iy = E(k), and Ty = E(k). Note that riare = £ = £ = £ = §L — 3 = A2 When the
population parameters are replaced by their sample counterparts, we obtain the estimators 7,, 7,1,
740, Ta10, and T, respectively. If normalized weights are used to estimate u, and m, for z = 0, 1,
the resulting ratio estimator corresponds to 7,. This is of course without taking into account how
the propensity score is estimated.

In what follows, we first consider ML-based estimation of the instrument propensity score.

For the estimator ", we use the moment functions ¢, y,, and ¢r. Based on the result given in

equation (A.1), the asymptotic distribution of " can be derived as follows:
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and H(X, @) denotes the Hessian of the log-likelihood of a.

The estimators 7 T ( 7y 1y and 7 T use the same moment functions for @ and A as T’”l However,
they estimate the population proportion of compliers using the moment functions derived from the
population relations I'y and Iy, respectively. The variances of #” and T’"f) have the same form as

!, where T is replaced with I'; and I'y. Thus, the asymptotic distributions of " ol I and %Zfo can be

summarized as follows:
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Erjo = E[%] - E[_((D -1z (DO-1)1-2)
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The estimator ?31’10 is essentially the difference of two ratio estimators whose covariance is zero.

Thus, the variance of the difference is the sum of variances of the two estimators. It follows that
A d
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Finally, we examine the estimators #” and 7<*. The key distinction between them is the method
used to estimate the instrument propensity score. The instrument propensity score is estimated
using maximum likelihood for #", while it is estimated using covariate balancing for <°. As a
result, the former employs ¢ whereas the latter uses ¢ within the M-estimation framework.
Thus, the moment function related to the estimation of @ and the appropriate moment functions

that take normalization into account can be used to obtain the asymptotic distribution:

\/N(ﬂ?l - TLATE) - N, Vo),
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In fact, V.. has the same structure as V., but it enjoys some additional simplifications when the
ch,
ML-based moment condition is used to estimate p(X). Namely, E [%] = -E [wflb(-)t//;bb)’],

B[ %] = B[ w0y ], and B[] = ~E [, ()] for 2 = 0,1.
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Table A.1: Parameters and Moment Functions

Parameter Population Relation Related Moment Condition
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Table B.1: Simulation Results for Design A.1

Normalized estimators Unnormalized estimators
2SLS 7 il 0 ol = e
0 =0.01
N =500 MSE 1 2.70 2.63 1093.84 14.16 1304.62 3.12
|B| 0.0095 0.0215 0.0216 0.1852 0.0365 0.1813 0.0333
Coverage rate 0.96 0.88 0.92 0.93 0.94 0.94 0.93
N = 1,000 MSE 1 2.75 2.72 4.11 3.45 4.36 3.07
|B| 0.0052 0.0090 0.0080 0.0359 0.0096 0.0357 0.0130
Coverage rate 0.95 0.91 0.93 0.94 0.94 0.95 0.93
N = 5,000 MSE 1 2.71 2.69 3.00 2.84 3.02 2.98
|B| 0.0003 0.0023 0.0023 0.0058 0.0018 0.0057 0.0035
Coverage rate 0.95 0.94 0.95 0.95 0.95 0.95 0.95
0 =0.02
N =500 MSE 1 1.93 1.91 20.87 2.94 20.67 2.11
|B| 0.0097 0.0154 0.0153 0.0492 0.0211 0.0495 0.0215
Coverage rate 0.96 0.91 0.93 0.94 0.94 0.94 0.93
N = 1,000 MSE 1 1.89 1.88 2.14 2.00 2.18 2.03
|B| 0.0027 0.0057 0.0056 0.0148 0.0058 0.0149 0.0082
Coverage rate 0.95 0.93 0.94 0.95 0.95 0.95 0.94
N = 5,000 MSE 1 1.86 1.85 2.00 1.90 2.01 1.98
|B| 0.0026 0.0032 0.0032 0.0048 0.0030 0.0048 0.0037
Coverage rate 0.95 0.95 0.95 0.95 0.95 0.95 0.95
0 =0.05
N =500 MSE 1 1.33 1.32 1.43 1.36 1.46 1.37
|B| 0.0016 0.0026 0.0024 0.0089 0.0025 0.0088 0.0036
Coverage rate 0.95 0.94 0.94 0.95 0.94 0.95 0.94
N = 1,000 MSE 1 1.32 1.31 1.38 1.33 1.39 1.36
|B| 0.0022 0.0001 0.0001 0.0024 0.0001 0.0024 0.0009
Coverage rate 0.95 0.94 0.95 0.95 0.95 0.95 0.95
N = 5,000 MSE 1 1.31 1.31 1.35 1.32 1.35 1.36
|B| 0.0000 0.0000 0.0000 0.0005 0.0000 0.0005 0.0001
Coverage rate 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Notes: The details of this simulation design are provided in Section 5 in the main text. “MSE” is the mean squared error of an estimator,
normalized by the mean squared error of 2SLS. “|B|” is the absolute bias. “Coverage rate” is the coverage rate for a nominal 95% confidence
interval. “2SLS” is the 2SLS estimator that additively controls for X. The weighting estimators are defined in Section 3 in the main text. All
weighting estimators also control for X. Results are based on 10,000 replications.
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Table B.2: Simulation Results for Design A.2

Normalized estimators Unnormalized estimators
2SLS 7 il 0 ol = e
0 =0.01
N =500 MSE 1 2.75 2.78 2.30e+04 6.83 3.09 2.52e+04
|B| 0.0023 0.0033 0.0028 0.4066 0.0046 0.0025 0.4334
Coverage rate 0.96 0.88 0.93 0.93 0.96 0.93 0.94
N = 1,000 MSE 1 2.63 2.60 3.03 292 2.72 3.26
|B| 0.0017 0.0013 0.0010 0.0008 0.0006 0.0011 0.0008
Coverage rate 0.95 0.91 0.94 0.94 0.96 0.94 0.95
N = 5,000 MSE 1 2.72 2.71 2.76 2.76 2.73 2.79
|B| 0.0008 0.0018 0.0018 0.0018 0.0017 0.0017 0.0017
Coverage rate 0.95 0.94 0.95 0.95 0.95 0.95 0.95
0 =0.02
N =500 MSE 1 1.93 1.91 2.31 2.16 2.00 2.44
|B| 0.0029 0.0027 0.0025 0.0026 0.0034 0.0028 0.0031
Coverage rate 0.95 0.91 0.93 0.94 0.95 0.94 0.95
N = 1,000 MSE 1 1.86 1.84 1.92 1.90 1.88 1.96
|B| 0.0019 0.0028 0.0032 0.0035 0.0034 0.0034 0.0035
Coverage rate 0.95 0.93 0.94 0.95 0.95 0.95 0.95
N = 5,000 MSE 1 1.91 1.90 1.92 1.91 1.91 1.93
|B| 0.0006 0.0007 0.0008 0.0008 0.0008 0.0008 0.0008
Coverage rate 0.95 0.94 0.95 0.95 0.95 0.95 0.95
0 =0.05
N =500 MSE 1 1.32 1.31 1.36 1.34 1.32 1.39
|B| 0.0008 0.0012 0.0013 0.0018 0.0016 0.0015 0.0017
Coverage rate 0.95 0.94 0.94 0.94 0.94 0.94 0.95
N = 1,000 MSE 1 1.30 1.30 1.31 1.31 1.31 1.32
|B| 0.0003 0.0008 0.0008 0.0007 0.0007 0.0010 0.0005
Coverage rate 0.95 0.95 0.95 0.95 0.95 0.95 0.95
N = 5,000 MSE 1 1.30 1.30 1.30 1.30 1.30 1.30
|B| 0.0005 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
Coverage rate 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Notes: The details of this simulation design are provided in Section 5 in the main text. “MSE” is the mean squared error of an estimator,
normalized by the mean squared error of 2SLS. “|B|” is the absolute bias. “Coverage rate” is the coverage rate for a nominal 95% confidence
interval. “2SLS” is the 2SLS estimator that additively controls for X. The weighting estimators are defined in Section 3 in the main text. All
weighting estimators also control for X. Results are based on 10,000 replications.
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Table B.3: Simulation Results for Design B

Normalized estimators Unnormalized estimators
2SLS 7 il gl it = gt
0 =0.01
N =500 MSE 1 2.57 2.74 189.22 210.94 761.97 4.02
|B| 0.0614 0.0140 0.0103 0.0490 0.0927 0.0059 0.0197
Coverage rate 0.96 0.88 0.94 0.95 0.95 0.94 0.94
N = 1,000 MSE 1 2.50 2.51 6.59 3.20 7.00 2.82
|B| 0.0551 0.0035 0.0024 0.0323 0.0094 0.0340 0.0065
Coverage rate 0.95 0.91 0.94 0.95 0.95 0.95 0.94
N = 5,000 MSE 1 1.96 1.95 2.19 2.06 2.20 2.10
|B| 0.0531 0.0009 0.0006 0.0046 0.0009 0.0045 0.0014
Coverage rate 0.92 0.94 0.95 0.95 0.95 0.95 0.95
0 =0.02
N =500 MSE 1 1.92 1.93 11.76 2.61 16.46 2.09
|B| 0.0498 0.0129 0.0117 0.0534 0.0186 0.0568 0.0142
Coverage rate 0.95 0.91 0.93 0.95 0.95 0.95 0.94
N = 1,000 MSE 1 1.81 1.80 2.20 1.96 2.23 1.92
|B| 0.0473 0.0063 0.0058 0.0182 0.0075 0.0180 0.0069
Coverage rate 0.95 0.93 0.95 0.95 0.96 0.96 0.95
N = 5,000 MSE 1 1.46 1.45 1.58 1.50 1.58 1.53
|B| 0.0436 0.0003 0.0003 0.0021 0.0004 0.0021 0.0006
Coverage rate 0.93 0.95 0.95 0.95 0.95 0.95 0.95
0 =0.05
N =500 MSE 1 1.30 1.30 5.79 1.35 5.22 1.34
|B| 0.0334 0.0018 0.0014 0.0141 0.0022 0.0137 0.0016
Coverage rate 0.96 0.94 0.95 0.95 0.95 0.96 0.95
N = 1,000 MSE 1 1.29 1.29 1.36 1.31 1.37 1.33
|B| 0.0335 0.0042 0.0040 0.0073 0.0041 0.0073 0.0041
Coverage rate 0.95 0.94 0.95 0.95 0.95 0.95 0.94
N = 5,000 MSE 1 1.12 1.12 1.16 1.13 1.16 1.15
|B| 0.0309 0.0008 0.0007 0.0012 0.0007 0.0013 0.0008
Coverage rate 0.94 0.95 0.95 0.95 0.95 0.95 0.95

Notes: The details of this simulation design are provided in Section 5 in the main text. “MSE” is the mean squared error of an estimator,
normalized by the mean squared error of 2SLS. “|B|” is the absolute bias. “Coverage rate” is the coverage rate for a nominal 95% confidence
interval. “2SLS” is the 2SLS estimator that additively controls for X. The weighting estimators are defined in Section 3 in the main text. All
weighting estimators also control for X. Results are based on 10,000 replications.
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Table B.4: Simulation Results for Design C

Normalized estimators Unnormalized estimators
2SLS 7 il 0 ol = e
0 =0.01
N =500 MSE 1 0.75 3.82 4.95e+04  2010.01  4.92e+04 219.69
|B| 4.6994 0.1184 0.7953 7.2631 2.5598 7.2230 2.4048
Coverage rate 0.33 0.78 0.82 0.83 0.96 0.83 0.93
N = 1,000 MSE 1 0.42 1.47 95.93 23.83 96.38 38.68
|B| 4.7053 0.0938 0.3867 0.8364 1.4320 0.8401 1.1898
Coverage rate 0.07 0.84 0.87 0.88 0.97 0.88 0.94
N = 5,000 MSE 1 0.09 0.30 0.34 2.24 0.34 7.35
|B| 4.6729 0.0415 0.0568 0.0848 0.2707 0.0849 0.2319
Coverage rate 0.00 0.92 0.94 0.94 0.96 0.94 0.95
0 =0.02
N =500 MSE 1 0.64 1.82 20.02 52.38 20.36 53.85
|B| 3.9155 0.0580 0.4457 0.4927 1.8422 0.4896 1.5703
Coverage rate 0.44 0.84 0.87 0.89 0.97 0.89 0.94
N = 1,000 MSE 1 0.36 0.97 1.29 7.64 1.29 24.19
|B| 3.8732 0.0521 0.1726 0.2334 0.7182 0.2335 0.5280
Coverage rate 0.15 0.89 0.91 0.92 0.96 0.92 0.95
N = 5,000 MSE 1 0.08 0.20 0.23 1.52 0.23 5.09
|B| 3.8464 0.0124 0.0109 0.0589 0.1196 0.0589 0.0763
Coverage rate 0.00 0.93 0.94 0.95 0.95 0.95 0.95
0 =0.05
N =500 MSE 1 0.62 1.13 1.44 7.88 1.44 24.77
|B| 2.6174 0.0767 0.1027 0.1660 0.5604 0.1661 0.2451
Coverage rate 0.66 0.91 0.93 0.94 0.97 0.94 0.95
N = 1,000 MSE 1 0.37 0.65 0.74 4.29 0.74 13.98
|B| 2.6376 0.0319 0.0268 0.0894 0.2009 0.0894 0.1782
Coverage rate 0.40 0.93 0.94 0.95 0.95 0.95 0.95
N = 5,000 MSE 1 0.09 0.15 0.16 0.93 0.16 3.10
|B| 2.6232 0.0029 0.0161 0.0035 0.0294 0.0035 0.0586
Coverage rate 0.00 0.95 0.95 0.95 0.95 0.95 0.95

Notes: The details of this simulation design are provided in Section 5 in the main text. “MSE” is the mean squared error of an estimator,
normalized by the mean squared error of 2SLS. “|B|” is the absolute bias. “Coverage rate” is the coverage rate for a nominal 95% confidence
interval. “2SLS” is the 2SLS estimator that additively controls for X. The weighting estimators are defined in Section 3 in the main text. All
weighting estimators also control for X. Results are based on 10,000 replications.
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Table B.5: Simulation Results for Design D

Normalized estimators

Unnormalized estimators

D R I A7 N it
0 =0.01
N =500 MSE 1 0.08 7.06 0.56 2.69e+05 0.32 1.75e+04
|B| 17.6766 0.6047 4.2535 0.6326 102.1028 0.7343 82.6894
Coverage rate 0.00 0.85 0.77 0.75 0.93 0.74 0.91
N = 1,000 MSE 1 0.04 3.98 2.64 1.44e+04 0.12 1.91e+05
|B| 17.5275 0.4052 6.1212 1.9580 46.4242 2.4467 46.6583
Coverage rate 0.00 0.88 0.80 0.79 0.86 0.79 0.82
N = 5,000 MSE 1 0.01 0.26 0.07 11.68 0.07 23.12
|B| 17.4073 0.3154 7.9930 3.7953 55.3392 3.7955 78.2082
Coverage rate 0.00 0.93 0.42 0.58 0.13 0.58 0.09
0 =0.02
N =500 MSE 1 0.06 0.40 0.21 7978.30 0.16 1.12e+04
|B| 14.1078 0.3874 4.0705 1.3717 17.2726 1.3658 40.6495
Coverage rate 0.00 0.89 0.84 0.84 0.89 0.83 0.86
N = 1,000 MSE 1 0.03 0.27 0.09 10.24 0.09 25.76
|B| 13.9940 0.3326 4.7909 2.0492 35.2328 2.0474 51.9926
Coverage rate 0.00 0.91 0.83 0.84 0.75 0.84 0.70
N = 5,000 MSE 1 0.01 0.18 0.05 6.64 0.05 13.56
|B| 139115 0.2707 5.3737 2.5524 34.3929 2.5523 49.3305
Coverage rate 0.00 0.95 0.36 0.61 0.02 0.61 0.01
0 =0.05
N =500 MSE 1 0.06 0.24 0.12 5.29 0.12 11.84
|B| 9.1248 0.2697 2.2155 0.8326 16.2049 0.8327 24.8322
Coverage rate 0.01 0.93 0.90 0.91 0.82 0.91 0.80
N = 1,000 MSE 1 0.03 0.15 0.06 4.01 0.06 8.93
|B| 9.0882 0.2770 2.3381 0.9487 15.9970 0.9487 24.1235
Coverage rate 0.00 0.94 0.87 0.91 0.57 0.91 0.54
N = 5,000 MSE 1 0.01 0.09 0.02 3.28 0.02 7.27
|B| 9.0474 0.2702 2.4706 1.0592 15.9694 1.0591 23.7925
Coverage rate 0.00 0.95 0.46 0.79 0.01 0.79 0.00

Notes: The details of this simulation design are provided in Section 5 in the main text. “MSE” is the mean squared error of an estimator,
normalized by the mean squared error of 2SLS. “|B|” is the absolute bias. “Coverage rate” is the coverage rate for a nominal 95% confidence
interval. “2SLS” is the 2SLS estimator that additively controls for X. The weighting estimators are defined in Section 3 in the main text. All

weighting estimators also control for X. Results are based on 10,000 replications.
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Figure B.1: Simulation Results for the Proportion of Compliers in Design A.1
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Notes: The details of this simulation design are provided in Section 5 in the main text. “A” corresponds to the first-stage coefficient on Z in
2SLS, controlling additively for X. “B” corresponds to the denominator of %Z” . “C,” “D,” and “E” correspond to N -1 Zfil Rip, N7 Zfil Rio,
and N7! Zﬁl ki, respectively. These estimators, as well as the denominator of #”, are based on an instrument propensity score, which is
estimated using logit ML, also controlling for X. “F” corresponds to the denominator of #*. “G” corresponds to N~! Zf\;l ki =N7! Zf\;l Kios
where the instrument propensity score is estimated using the logit model and the moment conditions in equation (9) in the main text, also

controlling for X, as in the case of the denominator of f';b . Results are based on 10,000 replications.
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Figure B.2: Simulation Results for the Proportion of Compliers in Design A.2
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Notes: The details of this simulation design are provided in Section 5 in the main text. “A” corresponds to the first-stage coefficient on Z in
2SLS, controlling additively for X. “B” corresponds to the denominator of %Z” . “C,” “D,” and “E” correspond to N -1 Zfil Rip, N7 Zfil Rio,
and N7! Zﬁl ki, respectively. These estimators, as well as the denominator of #”, are based on an instrument propensity score, which is
estimated using logit ML, also controlling for X. “F” corresponds to the denominator of #*. “G” corresponds to N~! Zf\;l ki =N7! Zf\;l Kios
where the instrument propensity score is estimated using the logit model and the moment conditions in equation (9) in the main text, also

controlling for X, as in the case of the denominator of f';b . Results are based on 10,000 replications.
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Simulation Results for the Proportion of Compliers in Design B
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Notes: The details of this simulation design are provided in Section 5 in the main text. “A” corresponds to the first-stage coefficient on Z in
2SLS, controlling additively for X. “B” corresponds to the denominator of %Z” . “C,” “D,” and “E” correspond to N -1 Zfil Rip, N7 Zfil Rio,
and N7! Zﬁl ki, respectively. These estimators, as well as the denominator of #”, are based on an instrument propensity score, which is
estimated using logit ML, also controlling for X. “F” corresponds to the denominator of #*. “G” corresponds to N~! Zf\;l ki =N7! Zf\;l Kios
where the instrument propensity score is estimated using the logit model and the moment conditions in equation (9) in the main text, also

controlling for X, as in the case of the denominator of f';b . Results are based on 10,000 replications.
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Figure B.4: Simulation Results for the Proportion of Compliers in Design C
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Notes: The details of this simulation design are provided in Section 5 in the main text. “A” corresponds to the first-stage coefficient on Z in
2SLS, controlling additively for X. “B” corresponds to the denominator of %Z” . “C,” “D,” and “E” correspond to N -1 Zfil Rip, N7 Zfil Rio,
and N7! Zﬁl ki, respectively. These estimators, as well as the denominator of #”, are based on an instrument propensity score, which is
estimated using logit ML, also controlling for X. “F” corresponds to the denominator of #*. “G” corresponds to N~! Zf\;l ki =N7! Zf\;l Kios
where the instrument propensity score is estimated using the logit model and the moment conditions in equation (9) in the main text, also
controlling for X, as in the case of the denominator of f';b . Results are based on 10,000 replications.
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Figure B.5: Simulation Results for the Proportion of Compliers in Design D
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Notes: The details of this simulation design are provided in Section 5 in the main text. “A” corresponds to the first-stage coefficient on Z in
2SLS, controlling additively for X. “B” corresponds to the denominator of %Z” . “C,” “D,” and “E” correspond to N -1 Zfil Rip, N7 Zfil Rios
and N7! Zl].il ki, respectively. These estimators, as well as the denominator of #”, are based on an instrument propensity score, which is
estimated using logit ML, also controlling for X. “F” corresponds to the denominator of ‘?'f"’. “G” corresponds to N~ ZZ (ki =N -1 ZZ | Kio,
where the instrument propensity score is estimated using the logit model and the moment conditions in equation (9) in the main text, also
controlling for X, as in the case of the denominator of #<”. Results are based on 10,000 replications.
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Figure C.1: Simulation Results for Design A.1, 6 = 0.01, N = 500

1 2
R —_
00. -
> >
E o
7 7
g =
j5) j5)
[a] A~
Il'! .
(\l_ .
o - o -
-1 . 0 . 1 -2 0 2
Estimation error Estimation error
3 4
<
— g
® Isa)
S -
> >
72 £
g £
[SR a
N S N
S - T < T T T T ol
-2 0 2 -200 0 200 400 600 800
Estimation error Estimation error
5 6
<
- <
[sa]
«
2 =
A A
! 3 -
= T T T S T T T
-20 0 20 40 -500 0 500 1000
Estimation error Estimation error
7
OO. -
>
£
&
j)
SR
(\I_ -
o

0 1 2 3
Estimation error

Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.2: Simulation Results for Design A.1, 6 = 0.01, N = 1,000

1 2
el
o —
gl
e -
7 7]
] ]
O — 53
A a
lf]. .
l(}. .
< T T S T T
-1 . 0 . 1 2 0 2
Estimation error Estimation error
3 4
e e
27 2~
= £
& 5]
L j5)
a a
0 0
S T T T S T T - T
-2 -1 0 2 -2 0 2 4 6
Estimation error Estimation error
5 6
] e
3,-—4 - E'H —
£ £
2] <]
5 O
=] &)
v v
=4 T T T S T T T A
-10 -5 0 5 -2 2 4 6
Estimation error Estimation error
7
gl
"?-—1 -
17}
]
O
[a)
l(\. .
< T

-2 0 2
Estimation error

Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to <*. “3” corresponds to #"!. “4” corresponds to %;”110. “5” corresponds to 7", “6” corresponds to "

(= %?ll) “T” corresponds to %fo). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.3: Simulation Results for Design A.1, 6 = 0.01, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';’fll). “7” corresponds to %% All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.4: Simulation Results for Design A.1, 6 = 0.02, N = 500
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #”. “3” corresponds to #'. “4” corresponds to 7| . “5” corresponds to #2'. “6” corresponds to £/

(= ‘?';’”1). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.5: Simulation Results for Design A.1, 6 = 0.02, N = 1,000

15 2

Density

1

5

0 . . 0
Estimation error Estimation error

4
el
2 2
= £
& 5]
L j5)
a a
lf1. .
T T S T T T
0 5 1 1.5 -1 1 2
Estimation error Estimation error
6
el
2 20—
£ £
2] <]
5 O
=] &)
II}_ .
T S T T T
2 -1 1 2
Estimation error
z
17}
]
O
[a)
T T

Estimation error

Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to <*. “3” corresponds to #"!. “4” corresponds to %;”110. “5” corresponds to 7", “6” corresponds to "

(= %?ll) “T” corresponds to ?;”6 All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.6: Simulation Results for Design A.1, 6 = 0.02, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.7: Simulation Results for Design A.1, 6 = 0.05, N = 500
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';’fll). “7” corresponds to %% All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.8: Simulation Results for Design A.1, 6 = 0.05, N = 1,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.9: Simulation Results for Design A.1, 6 = 0.05, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.10: Simulation Results for Design A.2, § = 0.01, N = 500
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #”. “3” corresponds to #'. “4” corresponds to 7| . “5” corresponds to #2'. “6” corresponds to £/

(= ‘?';’”1). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.11: Simulation Results for Design A.2, 6 = 0.01, N = 1,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to <*. “3” corresponds to #"!. “4” corresponds to %;”110. “5” corresponds to 7", “6” corresponds to "

(= %?ll) “T” corresponds to %fo). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.12: Simulation Results for Design A.2, 6 = 0.01, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';’fll). “7” corresponds to %% All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.13: Simulation Results for Design A.2, § = 0.02, N = 500
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #”. “3” corresponds to #'. “4” corresponds to 7| . “5” corresponds to #2'. “6” corresponds to £/

(= ‘?';’”1). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.14: Simulation Results for Design A.2, 6 = 0.02, N = 1,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to <*. “3” corresponds to #"!. “4” corresponds to %;”110. “5” corresponds to 7", “6” corresponds to "

(= %?ll) “T” corresponds to ?;”6 All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.15: Simulation Results for Design A.2, 6 = 0.02, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';’fll). “7” corresponds to %% All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.16: Simulation Results for Design A.2, § = 0.05, N = 500
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.

40



Figure C.17: Simulation Results for Design A.2, 6 = 0.05, N = 1,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #”. “3” corresponds to #'. “4” corresponds to 7| . “5” corresponds to #2'. “6” corresponds to £/

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.18: Simulation Results for Design A.2, 6 = 0.05, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.19: Simulation Results for Design B, 6 = 0.01, N = 500
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #”. “3” corresponds to #'. “4” corresponds to 7| . “5” corresponds to #2'. “6” corresponds to £/

(= ‘?';’”1). “7” corresponds to ‘T'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.20: Simulation Results for Design B, 6 = 0.01, N = 1,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to <*. “3” corresponds to #"!. “4” corresponds to %;”110. “5” corresponds to 7", “6” corresponds to "

(= %?ll) “T” corresponds to %fo). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.21: Simulation Results for Design B, 6 = 0.01, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.22: Simulation Results for Design B, 6 = 0.02, N = 500
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #”. “3” corresponds to #'. “4” corresponds to 7| . “5” corresponds to #2'. “6” corresponds to £/

(= ‘?';’”1). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.23: Simulation Results for Design B, 6 = 0.02, N = 1,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to <*. “3” corresponds to #"!. “4” corresponds to %;”110. “5” corresponds to 7", “6” corresponds to "

(= %?ll) “T” corresponds to %;’ff). All weighting estimators also control for X. Results are based on 10,000 replications.




Figure C.24: Simulation Results for Design B, 6 = 0.02, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.25: Simulation Results for Design B, 6 = 0.05, N = 500
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #”. “3” corresponds to #'. “4” corresponds to 7| . “5” corresponds to #2'. “6” corresponds to £/

(= ‘?';’fll). “7” corresponds to " . All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.26: Simulation Results for Design B, 6 = 0.05, N = 1,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.27: Simulation Results for Design B, 6 = 0.05, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.28: Simulation Results for Design C, 6 = 0.01, N = 500
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #”. “3” corresponds to #'. “4” corresponds to 7| . “5” corresponds to #2'. “6” corresponds to £/

(= ‘?'Z’ll). “7” corresponds to ‘T'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.29: Simulation Results for Design C, 6 = 0.01, N = 1,000
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Figure C.30: Simulation Results for Design C, 6 = 0.01, N = 5,000
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Figure C.31: Simulation Results for Design C, 6 = 0.02, N = 500
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(= ‘?';’”1). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.32: Simulation Results for Design C, 6 = 0.02, N = 1,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to <*. “3” corresponds to #"!. “4” corresponds to %;”110. “5” corresponds to 7", “6” corresponds to "

(= %?ll) “T” corresponds to ?;”6 All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.33: Simulation Results for Design C, 6 = 0.02, N = 5,000
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controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.34: Simulation Results for Design C, 6 = 0.05, N = 500
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controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.35: Simulation Results for Design C, 6 = 0.05, N = 1,000
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controls for X. “2” corresponds to #”. “3” corresponds to #'. “4” corresponds to 7| . “5” corresponds to #2'. “6” corresponds to £/

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.36: Simulation Results for Design C, 6 = 0.05, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';’fll). “7” corresponds to %% All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.37: Simulation Results for Design D, 6 = 0.01, N = 500
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #”. “3” corresponds to #'. “4” corresponds to 7| . “5” corresponds to #2'. “6” corresponds to £/

(= ‘?'Z‘ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.38: Simulation Results for Design D, 6 = 0.01, N = 1,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to <*. “3” corresponds to #"!. “4” corresponds to %;”110. “5” corresponds to 7", “6” corresponds to "

(= %?ll) “T” corresponds to %fo). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.39: Simulation Results for Design D, 6 = 0.01, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.40: Simulation Results for Design D, 6 = 0.02, N = 500
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #”. “3” corresponds to #'. “4” corresponds to 7| . “5” corresponds to #2'. “6” corresponds to £/

(= ‘?';’”1). “7” corresponds to ‘T'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.41: Simulation Results for Design D, 6 = 0.02, N = 1,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to <*. “3” corresponds to #"!. “4” corresponds to %;”110. “5” corresponds to 7", “6” corresponds to "

(= %?ll) “T” corresponds to %;’ff). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.42: Simulation Results for Design D, 6 = 0.02, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.43: Simulation Results for Design D, 6 = 0.05, N = 500
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively

controls for X. “2” corresponds to #”. “3” corresponds to #". “4” corresponds to

“5” corresponds to #. “6” corresponds to !

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.44: Simulation Results for Design D, 6 = 0.05, N = 1,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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Figure C.45: Simulation Results for Design D, 6 = 0.05, N = 5,000
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Notes: The details of this simulation design are provided in Section 5 in the main text. “1” corresponds to the 2SLS estimator that additively
controls for X. “2” corresponds to #<”. “3” corresponds to /. “4” corresponds to . “5” corresponds to #1. “6” corresponds to #"

(= ‘?';”ll). “7” corresponds to ‘?'Z’f). All weighting estimators also control for X. Results are based on 10,000 replications.
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