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Appendix A Proof of Theorem 1

First, consider equation (2) in the main text, L (y | 1, d, X) = α + τd + Xβ. By the Frisch–Waugh
theorem, τ = τa, where τa is defined by

L
[
y | 1, d, p (X)

]
= αa + τad + γa · p (X) . (A1)

Second, note that (A1) is a linear projection of y on two variables: one binary, d, and one arbitrarily
discrete or continuous, p (X). Thus, we can use the following result from Elder et al. (2010).

Lemma A1 (Elder et al., 2010). Let L (y | 1, d, x) = αe +τed +βex denote the linear projection of y

on d (a binary variable) and x (a single, possibly continuous variable). Then, assuming all objects

are well defined,

τe =
ρ · V (x | d = 1)

ρ · V (x | d = 1) + (1 − ρ) · V (x | d = 0)
· θ1

+
(1 − ρ) · V (x | d = 0)

ρ · V (x | d = 1) + (1 − ρ) · V (x | d = 0)
· θ0,

where

θ1 =
Cov (d, y)

V (d)
−

Cov (d, x)
V (d)

·
Cov (x, y | d = 1)

V (x | d = 1)

and

θ0 =
Cov (d, y)

V (d)
−

Cov (d, x)
V (d)

·
Cov (x, y | d = 0)

V (x | d = 0)
.

Combining the two pieces gives

τ =
ρ · V

[
p (X) | d = 1

]
ρ · V

[
p (X) | d = 1

]
+ (1 − ρ) · V

[
p (X) | d = 0

] · θ∗1
+

(1 − ρ) · V
[
p (X) | d = 0

]
ρ · V

[
p (X) | d = 1

]
+ (1 − ρ) · V

[
p (X) | d = 0

] · θ∗0, (A2)

where
θ∗1 =

Cov (d, y)
V (d)

−
Cov

[
d, p (X)

]
V (d)

·
Cov

[
p (X) , y | d = 1

]
V

[
p (X) | d = 1

] (A3)

and
θ∗0 =

Cov (d, y)
V (d)

−
Cov

[
d, p (X)

]
V (d)

·
Cov

[
p (X) , y | d = 0

]
V

[
p (X) | d = 0

] . (A4)
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Third, notice that θ∗1 = τAPLE,0 and θ∗0 = τAPLE,1, as defined in equation (8) in the main text. Indeed,

Cov (d, y)
V (d)

= E (y | d = 1) − E (y | d = 0) (A5)

and also
Cov

[
d, p (X)

]
V (d)

= E
[
p (X) | d = 1

]
− E

[
p (X) | d = 0

]
. (A6)

Moreover, for j = 0, 1,
Cov

[
p (X) , y | d = j

]
V

[
p (X) | d = j

] = γ j, (A7)

where γ1 and γ0 are defined in equations (5) and (6) in the main text, respectively. Because

E (y | d = 1) − E (y | d = 0) =
{
E

[
p (X) | d = 1

]
− E

[
p (X) | d = 0

]}
· γ1

+ (α1 − α0) + (γ1 − γ0) · E
[
p (X) | d = 0

]
(A8)

and also

E (y | d = 1) − E (y | d = 0) =
{
E

[
p (X) | d = 1

]
− E

[
p (X) | d = 0

]}
· γ0

+ (α1 − α0) + (γ1 − γ0) · E
[
p (X) | d = 1

]
, (A9)

where again α1 and α0 are defined in equations (5) and (6) in the main text, we get the result that
θ∗1 = τAPLE,0 and θ∗0 = τAPLE,1. Note that equations (A8) and (A9) correspond to special cases of the
Oaxaca–Blinder decomposition (Blinder, 1973; Oaxaca, 1973; Fortin et al., 2011), which is also
the focus of Elder et al. (2010). Finally, combining the three pieces gives

τ =
ρ · V

[
p (X) | d = 1

]
ρ · V

[
p (X) | d = 1

]
+ (1 − ρ) · V

[
p (X) | d = 0

] · τAPLE,0

+
(1 − ρ) · V

[
p (X) | d = 0

]
ρ · V

[
p (X) | d = 1

]
+ (1 − ρ) · V

[
p (X) | d = 0

] · τAPLE,1, (A10)

which completes the proof.
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Appendix B Extensions

B1 Proportion of Treated Units and OLS Weights

To show formally that w1 is decreasing in ρ and that w0 is increasing in ρ, it is convenient to
additionally assume that E (d | X) is linear in X.

Assumption B1.1. E (d | X) = p (X) = αp + Xβp.

This restriction is satisfied automatically in saturated models, as studied by Angrist (1998) and
Humphreys (2009). It is also used by Aronow and Samii (2016) and Abadie et al. (2020). In
the present context there are two reasons why Assumption B1.1 is useful. First, it allows us to
rewrite w0 and w1 solely in terms of unconditional expectations of p (X) and its powers. Second,
it simplifies the calculation of the derivatives of w0 and w1 with respect to the intercept of the
propensity score model. Imposing a shift on this intercept is equivalent to changing ρ by a small
amount. It turns out that Theorem 1 and Assumption B1.1 imply the following result.

Proposition B1.1. Under Assumptions 1, 2, and B1.1,

dw1

dαp
< 0 and

dw0

dαp
> 0.

Proof. For simplicity, we first focus on a0 and a1, which we define as a0 = ρ · V
[
p (X) | d = 1

]
and a1 = (1 − ρ) · V

[
p (X) | d = 0

]
. As a result, w0 = a0

a0+a1
and w1 = a1

a0+a1
. It turns out that we can

rewrite a0 as

a0 = E (d) · E
({

p (X) − E
[
p (X) | d = 1

]}2
| d = 1

)
= E (d) ·

(
E

[
p (X)2

| d = 1
]
−

{
E

[
p (X) | d = 1

]}2
)

= E (d) ·

E
[
p (X)2 d

]
E (d)

−

{
E

[
p (X) d

]
E (d)

}2


= E
[
p (X)2 d

]
−

{
E

[
p (X) d

]}2

E (d)

= E
[
p (X)2 E (d | X)

]
−

{
E

[
p (X) E (d | X)

]}2

E [E (d | X)]

= E
[
p (X)3

]
−

{
E

[
p (X)2

]}2

E
[
p (X)

] . (B1.1)
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Then, taking the derivative of a0 with respect to αp gives

da0

dαp
= 3E

[
p (X)2

]
−

4E
[
p (X)2

]
E

[
p (X)

]
E

[
p (X)

] +

{
E

[
p (X)2

]}2

E
[
p (X)

]2

= −E
[
p (X)2

]
+

{
E

[
p (X)2

]}2

E
[
p (X)

]2

=

{
E

[
p (X)2

]}2
− E

[
p (X)2

]
E

[
p (X)

]2

E
[
p (X)

]2

=
E

[
p (X)2

] {
E

[
p (X)2

]
− E

[
p (X)

]2
}

E
[
p (X)

]2

=
E

[
p (X)2

]
V

[
p (X)

]
E

[
p (X)

]2 > 0. (B1.2)

Similarly,

a1 = [1 − E (d)] · E
({

p (X) − E
[
p (X) | d = 0

]}2
| d = 0

)
= [1 − E (d)] ·

(
E

[
p (X)2

| d = 0
]
−

{
E

[
p (X) | d = 0

]}2
)

= [1 − E (d)] ·

E
[
p (X)2

]
− E

[
p (X)2 d

]
1 − E (d)

−

{
E

[
p (X)

]
− E

[
p (X) d

]
1 − E (d)

}2


= E
[
p (X)2

]
− E

[
p (X)2 d

]
−

{
E

[
p (X)

]
− E

[
p (X) d

]}2

1 − E (d)

= E
[
p (X)2

]
− E

[
p (X)2 E (d | X)

]
−

{
E

[
p (X)

]
− E

[
p (X) E (d | X)

]}2

1 − E [E (d | X)]

= E
[
p (X)2

]
− E

[
p (X)3

]
−

{
E

[
p (X)

]
− E

[
p (X)2

]}2

1 − E
[
p (X)

] (B1.3)

and

da1

dαp
= 2E

[
p (X)

]
− 3E

[
p (X)2

]
−

{
E

[
p (X)

]
− E

[
p (X)2

]}2{
1 − E

[
p (X)

]}2

−
2 ·

{
1 − E

[
p (X)

]}
·
{
1 − 2E

[
p (X)

]}
·
{
E

[
p (X)

]
− E

[
p (X)2

]}
{
1 − E

[
p (X)

]}2

=
E

[
p (X)

]2
− E

[
p (X)2

]
{
1 − E

[
p (X)

]}2
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+
2E

[
p (X)

]
E

[
p (X)2

]
− 2E

[
p (X)

]3{
1 − E

[
p (X)

]}2

+
E

[
p (X)2

]
E

[
p (X)

]2
−

{
E

[
p (X)2

]}2{
1 − E

[
p (X)

]}2

=
−V

[
p (X)

]
·
{
1 − 2E

[
p (X)

]
+ E

[
p (X)2

]}
{
1 − E

[
p (X)

]}2

=
−V

[
p (X)

]
· E

{[
1 − p (X)

]2
}

{
1 − E

[
p (X)

]}2 < 0. (B1.4)

Finally, it follows that

dw1

dαp
< 0 and

dw0

dαp
> 0, (B1.5)

since w0 = a0
a0+a1

, w1 = a1
a0+a1

, a0 > 0, a1 > 0, da0
dαp

> 0, and da1
dαp

< 0. �
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B2 Further Intuition for Theorem 1

We begin by noting that because the linear projection passes through the point of means of all vari-
ables, which implies, for example, that E (y | d = 1) = α1 +γ1 ·E

[
p (X) | d = 1

]
and E (y | d = 0) =

α0 + γ0 · E
[
p (X) | d = 0

]
, the average partial linear effects of d on both groups of interest can also

be expressed as
τAPLE,1 = E (y | d = 1) −

{
α0 + γ0 · E

[
p (X) | d = 1

]}
(B2.1)

and
τAPLE,0 =

{
α1 + γ1 · E

[
p (X) | d = 0

]}
− E (y | d = 0) . (B2.2)

In other words, we only need the linear projection of y on p (X) in group zero, and not in group
one, to define τAPLE,1. Similarly, we need the linear projection of y on p (X) in group one, but not
in group zero, to define τAPLE,0. When all objects are well defined, τAPLE, j is also equivalent to the
coefficient on d in the linear projection of y on d, p (X), and d ·

{
p (X) − E

[
p (X) | d = j

]}
.

Then, an alternative intuition for the OLS weights in Theorem 1 follows from partial resid-
ualization that is implicit in least squares estimation. The first thing to note is that τ, the OLS
estimand, is equal to the coefficient on d in the linear projection of y − γa · p (X) on d, where γa is
defined in equation (A1). An implication of Deaton (1997) and Solon et al. (2015) is that γa is also
a convex combination of γ1 and γ0, where the weight on γ1 is increasing in ρ. It follows that τ is a
weighted average as well; it combines the coefficients on d in the linear projections of y−γ1 · p (X)

and y − γ0 · p (X) on d in group zero and one, respectively. While the weight on the former (latter)
is increasing (decreasing) in ρ, this parameter corresponds to τAPLE,0 (τAPLE,1), as can be seen from
equations (B2.1) and (B2.2). Indeed, as noted above, it is γ1 (and not γ0) that is necessary to define
τAPLE,0. The bottom line is that when there are more treated than untreated units, γ1 is likely to be
better estimated than γ0 and OLS gives more weight to the contrast of y − γ1 · p (X), which in turn
corresponds to τAPLE,0. Interestingly, this parallels the intuition in Angrist (1998) and Angrist and
Pischke (2009) that OLS gives more weight to treatment effects that are better estimated in finite
samples. Also, this discussion leads to an alternative proof of Theorem 1.

Proof. As in online appendix A, consider equation (2) in the main text, L (y | 1, d, X) = α+τd+Xβ,
and note that τ = τa, where τa is defined by L

[
y | 1, d, p (X)

]
= αa + τad + γa · p (X). We can write

this linear projection in error form as

y = αa + τad + γa · p (X) + υ. (B2.3)

As in the main text, we also consider separate linear projections for d = 1 and d = 0, namely

L
[
y | 1, p (X) , d = 1

]
= α1 + γ1 · p (X) (B2.4)
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and
L

[
y | 1, p (X) , d = 0

]
= α0 + γ0 · p (X) . (B2.5)

Henceforth, to simplify notation I will use l1(X) to denote α1 + γ1 · p (X) and l0(X) to denote
α0 + γ0 · p (X). To understand the relationship between γa, γ1, and γ0, we can use the following
result from Deaton (1997) and Solon et al. (2015).

Lemma B2.1 (Deaton, 1997; Solon et al., 2015). Let L (y | 1, d, x) = αe + τed + βex denote the

linear projection of y on d (a binary variable) and x (a single, possibly continuous variable). Then,

assuming all objects are well defined,

βe =
ρ · V (x | d = 1)

ρ · V (x | d = 1) + (1 − ρ) · V (x | d = 0)
· β1,e

+
(1 − ρ) · V (x | d = 0)

ρ · V (x | d = 1) + (1 − ρ) · V (x | d = 0)
· β0,e,

where β1,e and β0,e are defined by

L (y | 1, x, d = 1) = α1,e + β1,ex

and

L (y | 1, x, d = 0) = α0,e + β0,ex.

An implication of Lemma B2.1 is that

γa = w0 · γ1 + w1 · γ0. (B2.6)

Next, we can rewrite equation (B2.3) as

y − w0 · γ1 · p (X) − w1 · γ0 · p (X) = αa + τad + υ

= E (y) − τa · E (d) − γa · E
[
p (X)

]
+ τad + υ. (B2.7)

Moreover, it turns out that

α1 = E (y | d = 1) − γ1 · E
[
p (X) | d = 1

]
(B2.8)

and also
α0 = E (y | d = 0) − γ0 · E

[
p (X) | d = 0

]
. (B2.9)
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It follows that

y − w0 · l1(X) − w1 · l0(X) = E (y) − w0 · E (y | d = 1) − w1 · E (y | d = 0)

+ w0 · γ1 ·
{
E

[
p (X) | d = 1

]
− E

[
p (X)

]}
+ w1 · γ0 ·

{
E

[
p (X) | d = 0

]
− E

[
p (X)

]}
− τa · E (d) + τad + υ. (B2.10)

In other words, in a linear projection of y − w0 · l1(X) − w1 · l0(X) on d, the coefficient on d is
equal to τa and the intercept is equal to E (y) − w0 · E (y | d = 1) − w1 · E (y | d = 0) + w0 · γ1 ·{
E

[
p (X) | d = 1

]
− E

[
p (X)

]}
+w1 ·γ0 ·

{
E

[
p (X) | d = 0

]
− E

[
p (X)

]}
−τa ·E (d). However, τa must

also be equal to the difference in expected values of the dependent variable for d = 1 and d = 0.
Using equations (B2.1) and (B2.2), we can write these expected values as

E
[
y − w0 · l1(X) − w1 · l0(X) | d = 1

]
= w1 · τAPLE,1 (B2.11)

and
E

[
y − w0 · l1(X) − w1 · l0(X) | d = 0

]
= −w0 · τAPLE,0. (B2.12)

Thus,
τ = τa = w1 · τAPLE,1 + w0 · τAPLE,0, (B2.13)

which completes the proof. �
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B3 A Weighted Least Squares Correction

Suppose we use weighted least squares (WLS) to estimate the model with d and p (X) as the only
independent variables. In this case we would like to obtain a set of weights, w, such that τw in

L
(√
w · y |

√
w,
√
w · d,

√
w · p (X)

)
= αw

√
w + τw

√
w · d + γw

√
w · p (X) (B3.1)

has a useful interpretation. An appropriate set of weights is provided in Proposition B3.1.

Proposition B3.1 (Weighted Least Squares Correction). Suppose that Assumptions 1 and 2 are

satisfied. Also, w =
1−ρ
w0
· d +

ρ

w1
· (1 − d). Then,

τw = τAPLE.

Suppose that Assumptions 1, 2, 3, and 4 are satisfied. Also, w =
1−ρ
w0
· d +

ρ

w1
· (1 − d). Then,

τw = τAT E.

The proof of Proposition B3.1 follows directly from the proofs of Theorem 1 and Corollary 1,
and is omitted. Proposition B3.1 establishes that the average effect of d can be recovered from a
weighted least squares procedure, with weights of 1−ρ

w0
for units with d = 1 and weights of ρ

w1
for

units with d = 0. These weights consist of two parts: either 1
w1

or 1
w0

; and either ρ or 1−ρ. The role
of the first part is always to undo the OLS weights (w1 and w0 in Theorem 1); the role of the second
part is to impose the correct weights of ρ on the average effect of d on group one and 1 − ρ on the
average effect of d on group zero. Finally, it is useful to note that there is no similar procedure to
recover the average effects of d on group zero and one; both of these objects, however, are easily
obtained from equation (8) in the main text.

Interestingly, the structure of the weighted least squares procedure in Proposition B3.1 resem-
bles the “tyranny of the minority” estimator in Lin (2013). This method uses weights of 1−ρ

ρ
for

units with d = 1 and weights of ρ

1−ρ for units with d = 0; it also controls for X instead of p (X).
It is important to note, however, that this method is designed to solve a different problem than
Proposition B3.1. In particular, Freedman (2008b,a) demonstrates that regression adjustments to
experimental data can lead to a loss in precision. On the other hand, Lin (2013) shows that this
is no longer possible if we additionally interact d with X (see also Negi and Wooldridge, 2019).
Then, Lin (2013) derives the “tyranny of the minority” estimator as an alternative procedure, based
on a single conditional mean, which does not suffer from this loss in precision. In the context of
observational data, however, the weights in Lin (2013) guarantee that τw = τAPLE only in a special
case, namely under Assumption 5, V

[
p (X) | d = 1

]
= V

[
p (X) | d = 0

]
.
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B4 Comparison with Angrist (1998) and Aronow and Samii (2016)

The result in Angrist (1998) states that if L (y | d, X) = τnd +
∑S

s=1 βn,sxs, where X = (x1, . . . , xS ) is
a vector of exhaustive and mutually exclusive “stratum” indicators, then

τn =

S∑
s=1

P (xs = 1) · P (d = 1 | xs = 1) · P (d = 0 | xs = 1)∑S
t=1 P (xt = 1) · P (d = 1 | xt = 1) · P (d = 0 | xt = 1)

· τs, (B4.1)

where τs = E (y | d = 1, xs = 1) − E (y | d = 0, xs = 1). Further, under standard assumptions, τs =

E
[
y(1) − y(0) | X

]
. In this appendix I show that equation (B4.1) follows from Corollary 1 when

the model for y is saturated.
The starting point is to note that, because the model for y is saturated, E (d | X) = p (X) =∑S

s=1 βp,sxs. Additionally, Assumptions 3 and 4 allow us to write E
[
y(1) − y(0) | X

]
= (α1 − α0) +

(γ1 − γ0) · p (X). It follows that equation (B4.1) can alternatively be expressed as

τn =
E

{
p (X) ·

[
1 − p (X)

]
·
[
(α1 − α0) + (γ1 − γ0) · p (X)

]}
E

{
p (X) ·

[
1 − p (X)

]}
= (α1 − α0) + (γ1 − γ0) ·

E
[
p (X)2

]
− E

[
p (X)3

]
E

[
p (X)

]
− E

[
p (X)2

] . (B4.2)

The same representation of the OLS estimand under Assumptions 3 and 4 follows from Aronow
and Samii (2016), who generalize the result in Angrist (1998) to any model, saturated or not, where
E (d | X) is linear in X.

To demonstrate that the results in Angrist (1998) and Aronow and Samii (2016) follow from
Corollary 1, we need to show that equation (B4.2) can be obtained by rearranging the expression
in Corollary 1. To see this note that, under Assumptions 3 and 4, τATT = (α1 − α0) + (γ1 − γ0) ·
E

[
p (X) | d = 1

]
and τATU = (α1 − α0) + (γ1 − γ0) · E

[
p (X) | d = 0

]
. Upon rearrangement,

τATT = (α1 − α0) + (γ1 − γ0) ·
E

[
p (X) d

]
E (d)

= (α1 − α0) + (γ1 − γ0) ·
E

[
p (X)2

]
E

[
p (X)

] (B4.3)

and

τATU = (α1 − α0) + (γ1 − γ0) ·
E

[
p (X) · (1 − d)

]
1 − E (d)

= (α1 − α0) + (γ1 − γ0) ·
E

[
p (X)

]
− E

[
p (X)2

]
1 − E

[
p (X)

] . (B4.4)
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Also, because E (d | X) is linear in X and hence equal to p (X), we can use the results from on-

line appendix B1, which state that ρ · V
[
p (X) | d = 1

]
= E

[
p (X)3

]
−
{E[p(X)2]}2

E[p(X)] and (1 − ρ) ·

V
[
p (X) | d = 0

]
= E

[
p (X)2

]
− E

[
p (X)3

]
−
{E[p(X)]−E[p(X)2]}2

1−E[p(X)] . It follows that

w0 =
ρ · V

[
p (X) | d = 1

]
ρ · V

[
p (X) | d = 1

]
+ (1 − ρ) · V

[
p (X) | d = 0

]
=

E
[
p (X)3

]
−
{E[p(X)2]}2

E[p(X)]

E
[
p (X)2

]
−
{E[p(X)2]}2

E[p(X)] −
{E[p(X)]−E[p(X)2]}2

1−E[p(X)]

(B4.5)

and

w1 =
(1 − ρ) · V

[
p (X) | d = 0

]
ρ · V

[
p (X) | d = 1

]
+ (1 − ρ) · V

[
p (X) | d = 0

]
=

E
[
p (X)2

]
− E

[
p (X)3

]
−
{E[p(X)]−E[p(X)2]}2

1−E[p(X)]

E
[
p (X)2

]
−
{E[p(X)2]}2

E[p(X)] −
{E[p(X)]−E[p(X)2]}2

1−E[p(X)]

. (B4.6)

Consequently, an implication of Corollary 1 is that

τn = w1 · τATT + w0 · τATU

= (α1 − α0) + (γ1 − γ0) ·

{
E

[
p (X)2

]
− E

[
p (X)3

]
−
{E[p(X)]−E[p(X)2]}2

1−E[p(X)]

}
· E

[
p (X)2

]
{
E

[
p (X)2

]
−
{E[p(X)2]}2

E[p(X)] −
{E[p(X)]−E[p(X)2]}2

1−E[p(X)]

}
· E

[
p (X)

]

+ (γ1 − γ0) ·

{
E

[
p (X)3

]
−
{E[p(X)2]}2

E[p(X)]

}
·
{
E

[
p (X)

]
− E

[
p (X)2

]}
{
E

[
p (X)2

]
−
{E[p(X)2]}2

E[p(X)] −
{E[p(X)]−E[p(X)2]}2

1−E[p(X)]

}
·
{
1 − E

[
p (X)

]} (B4.7)

or, equivalently,

τn = (α1 − α0) + (γ1 − γ0) ·
λn

λd
, (B4.8)

where

λd =

E
[
p (X)2

]
−

{
E

[
p (X)2

]}2

E
[
p (X)

] −

{
E

[
p (X)

]
− E

[
p (X)2

]}2

1 − E
[
p (X)

]
 · E [

p (X)
]
·
{
1 − E

[
p (X)

]}
(B4.9)
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and

λn =

E
[
p (X)2

]
− E

[
p (X)3

]
−

{
E

[
p (X)

]
− E

[
p (X)2

]}2

1 − E
[
p (X)

]
 · E [

p (X)2
]
·
{
1 − E

[
p (X)

]}
+

E
[
p (X)3

]
−

{
E

[
p (X)2

]}2

E
[
p (X)

]
 · {E [

p (X)
]
− E

[
p (X)2

]}
· E

[
p (X)

]
. (B4.10)

Upon further rearrangement,

λd = E
[
p (X)2

]
· E

[
p (X)

]
+ E

[
p (X)2

]
·
{
E

[
p (X)

]}2
−

{
E

[
p (X)2

]}2
−

{
E

[
p (X)

]}3

=
{
E

[
p (X)

]
− E

[
p (X)2

]}
·
{
E

[
p (X)2

]
−

{
E

[
p (X)

]}2
}

(B4.11)

and

λn =
{
E

[
p (X)2

]}2
+ E

[
p (X)3

]
·
{
E

[
p (X)

]}2
− E

[
p (X)3

]
· E

[
p (X)2

]
− E

[
p (X)2

]
·
{
E

[
p (X)

]}2

=
{
E

[
p (X)2

]
− E

[
p (X)3

]}
·
{
E

[
p (X)2

]
−

{
E

[
p (X)

]}2
}
. (B4.12)

Finally, plugging equations (B4.11) and (B4.12) into equation (B4.8) gives

τn = (α1 − α0) + (γ1 − γ0) ·

{
E

[
p (X)2

]
− E

[
p (X)3

]}
·
{
E

[
p (X)2

]
−

{
E

[
p (X)

]}2
}{

E
[
p (X)

]
− E

[
p (X)2

]}
·
{
E

[
p (X)2

]
−

{
E

[
p (X)

]}2
}

= (α1 − α0) + (γ1 − γ0) ·
E

[
p (X)2

]
− E

[
p (X)3

]
E

[
p (X)

]
− E

[
p (X)2

] . (B4.13)

The equivalence between equations (B4.2) and (B4.13) confirms that the result in Angrist (1998)
follows from Corollary 1 when the model for y is saturated. Similarly, the result in Aronow and
Samii (2016) follows from Corollary 1 when E (d | X) is linear in X.
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Appendix C Implementation in Stata

This appendix discusses the implementation of my theoretical results using the Stata package
hettreatreg. In particular, I show how to apply this package to obtain the estimates in column 4
of Table 1 in the main text. To download this package and the NSW–CPS data from SSC, type

. ssc install hettreatreg, all

in the Command window. Then, type

. use nswcps, clear

to open the NSW–CPS data set. Then, the standard way to obtain the OLS estimate in column 4 of
Table 1 in the main text would be to type

. regress re78 treated age-re75, vce(robust)

Linear regression Number of obs = 16,177

F(10, 16166) = 1718.20

Prob > F = 0.0000

R-squared = 0.4762

Root MSE = 7001.7

------------------------------------------------------------------------------

| Robust

re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

treated | 793.587 618.6092 1.28 0.200 -418.9555 2006.13

age | -233.6775 40.7162 -5.74 0.000 -313.4857 -153.8692

age2 | 1.814371 .5581946 3.25 0.001 .7202474 2.908494

educ | 166.8492 28.70683 5.81 0.000 110.5807 223.1178

black | -790.6086 197.8149 -4.00 0.000 -1178.348 -402.8694

hispanic | -175.9751 218.3033 -0.81 0.420 -603.8738 251.9235

married | 224.266 152.4363 1.47 0.141 -74.52594 523.0579

nodegree | 311.8445 176.414 1.77 0.077 -33.9464 657.6355

re74 | .2953363 .0152084 19.42 0.000 .2655261 .3251466

re75 | .4706353 .0153101 30.74 0.000 .4406259 .5006447

_cons | 7634.344 737.8143 10.35 0.000 6188.146 9080.542

------------------------------------------------------------------------------

It is also possible, however, to obtain the same output and several additional estimates—including
those of my diagnostics and those of implicit estimates of ATE, ATT, and ATU—by typing
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. hettreatreg age-re75, o(re78) t(treated) noisily vce(robust)

Linear regression Number of obs = 16,177

F(10, 16166) = 1718.20

Prob > F = 0.0000

R-squared = 0.4762

Root MSE = 7001.7

------------------------------------------------------------------------------

| Robust

re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

treated | 793.587 618.6092 1.28 0.200 -418.9555 2006.13

age | -233.6775 40.7162 -5.74 0.000 -313.4857 -153.8692

age2 | 1.814371 .5581946 3.25 0.001 .7202474 2.908494

educ | 166.8492 28.70683 5.81 0.000 110.5807 223.1178

black | -790.6086 197.8149 -4.00 0.000 -1178.348 -402.8694

hispanic | -175.9751 218.3033 -0.81 0.420 -603.8738 251.9235

married | 224.266 152.4363 1.47 0.141 -74.52594 523.0579

nodegree | 311.8445 176.414 1.77 0.077 -33.9464 657.6355

re74 | .2953363 .0152084 19.42 0.000 .2655261 .3251466

re75 | .4706353 .0153101 30.74 0.000 .4406259 .5006447

_cons | 7634.344 737.8143 10.35 0.000 6188.146 9080.542

------------------------------------------------------------------------------

"OLS" is the estimated regression coefficient on treated.

OLS = 793.6

P(d=1) = .011

P(d=0) = .989

w1 = .983

w0 = .017

delta = -.971

ATE = -6751

ATT = 928.4
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ATU = -6840

OLS = w1*ATT + w0*ATU = 793.6

Alternatively, we may restrict our attention to this additional output by typing

. hettreatreg age-re75, o(re78) t(treated)

"OLS" is the estimated regression coefficient on treated.

OLS = 793.6

P(d=1) = .011

P(d=0) = .989

w1 = .983

w0 = .017

delta = -.971

ATE = -6751

ATT = 928.4

ATU = -6840

OLS = w1*ATT + w0*ATU = 793.6

In any case, OLS is the estimated regression coefficient on the variable designated as treatment.
P(d=1) and P(d=0) correspond to ρ̂ and 1 − ρ̂, respectively. w1, w0, and delta correspond to
ŵ1, ŵ0, and δ̂, respectively. Finally, ATE, ATT, and ATU correspond to τ̂APLE, τ̂APLE,1, and τ̂APLE,0,
respectively. hettreatreg stores all these estimates in e(). Type

. help hettreatreg

for more information and additional examples.
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Appendix D Implementation in R

Similar to online appendix C, I now discuss the implementation of my theoretical results using the
R package hettreatreg. As before, I show how to obtain the estimates reported in column 4 of
Table 1 in the main text. To download this package and the NSW–CPS data from CRAN, type

> install.packages("hettreatreg")

in the R/R Studio console. Next, type

> library(hettreatreg)

to load hettreatreg and

> data("nswcps")

to open the NSW–CPS data set. Then, the standard way to obtain the OLS estimate in column 4 of
Table 1 in the main text would be to type

> lm(re78 ~ treated + age + age2 + educ + black + hispanic + married + nodegree

+ re74 + re75, data = nswcps)

Call:

lm(formula = re78 ~ treated + age + age2 + educ + black + hispanic +

married + nodegree + re74 + re75, data = nswcps)

Coefficients:

(Intercept) treated age age2 educ black

7634.3441 793.5870 -233.6775 1.8144 166.8492 -790.6086

hispanic married nodegree re74 re75

-175.9751 224.2660 311.8445 0.2953 0.4706

Using hettreatreg, it is possible to obtain several additional estimates, including those of my
diagnostics and those of implicit estimates of ATE, ATT, and ATU. Before doing so, it is useful to
designate an outcome variable, a treatment variable, and a list of control variables. To do this, type

> outcome <- nswcps$re78

> treated <- nswcps$treated

> our_vars <- c("age", "age2", "educ", "black", "hispanic", "married", "nodegree",

"re74", "re75")

> covariates <- subset(nswcps, select = our_vars)
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Then, type

> hettreatreg(outcome, treated, covariates, verbose = TRUE)

"OLS" is the estimated regression coefficient on treated.

OLS = 793.6

P(d=1) = 0.011

P(d=0) = 0.989

w1 = 0.983

w0 = 0.017

delta = -0.971

ATE = -6751

ATT = 928.4

ATU = -6840

OLS = w1*ATT + w0*ATU = 793.6

To interpret these estimates, note that OLS is the estimated regression coefficient on the variable
designated as treatment. P(d=1) and P(d=0) correspond to ρ̂ and 1 − ρ̂, respectively. w1, w0, and
delta correspond to ŵ1, ŵ0, and δ̂, respectively. Finally, ATE, ATT, and ATU correspond to τ̂APLE,
τ̂APLE,1, and τ̂APLE,0, respectively. Type

> ?hettreatreg

for more information and an additional example. Further information is also available from CRAN
at https://CRAN.R-project.org/package=hettreatreg.
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Appendix E Robustness Checks

E1 The Effects of a Training Program on Earnings

Figure E1.1: WLS Estimates of the Effects of a Training Program on Earnings
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Notes: The vertical axis represents WLS estimates of the effect of NSW program on
earnings in 1978 using the model in equation (1) in the main text and the specification
in column 1 of Table 1, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E1.2: WLS Estimates of the Effects of a Training Program on Earnings
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Notes: The vertical axis represents WLS estimates of the effect of NSW program on
earnings in 1978 using the model in equation (1) in the main text and the specification
in column 2 of Table 1, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E1.3: WLS Estimates of the Effects of a Training Program on Earnings
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Notes: The vertical axis represents WLS estimates of the effect of NSW program on
earnings in 1978 using the model in equation (1) in the main text and the specification
in column 3 of Table 1, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E1.4: WLS Estimates of the Effects of a Training Program on Earnings
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Notes: The vertical axis represents WLS estimates of the effect of NSW program on
earnings in 1978 using the model in equation (1) in the main text and the specification
in column 4 of Table 1, with weights of 1 for treated and 1
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horizontal axis represents k.
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Figure E1.5: Relationship Between Earnings and p (X)
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Notes: The vertical axis represents earnings in 1978. The horizontal axis represents
the LPM propensity score. The propensity score is estimated using the specification
in column 1 of Table 1. “Local mean smooth” is estimated using the Epanechnikov
kernel and a rule-of-thumb bandwidth.
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Figure E1.6: Relationship Between Earnings and p (X)
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in column 2 of Table 1. “Local mean smooth” is estimated using the Epanechnikov
kernel and a rule-of-thumb bandwidth.
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Figure E1.7: Relationship Between Earnings and p (X)
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Notes: The vertical axis represents earnings in 1978. The horizontal axis represents
the LPM propensity score. The propensity score is estimated using the specification
in column 3 of Table 1. “Local mean smooth” is estimated using the Epanechnikov
kernel and a rule-of-thumb bandwidth.
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Figure E1.8: Relationship Between Earnings and p (X)
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the LPM propensity score. The propensity score is estimated using the specification
in column 4 of Table 1. “Local mean smooth” is estimated using the Epanechnikov
kernel and a rule-of-thumb bandwidth.
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Table E1.1: Alternative Estimates of the Effects of a Training Program on Earnings

(1) (2) (3) (4)
Matching on the LPM propensity score

ÂTE –9,227*** –7,504** –6,245* –6,581*
(2,388) (3,518) (3,382) (3,370)

ÂTT –3,282*** 257 975 –892
(863) (694) (813) (906)

ÂTU –9,295*** –7,594** –6,328* –6,646*
(2,415) (3,556) (3,420) (3,409)

Matching on the logit propensity score
ÂTE –6,682** –7,683*** –4,187 –2,961

(2,773) (2,421) (3,012) (11,900)
ÂTT –3,855*** 265 2,117** 2,032**

(854) (695) (856) (860)
ÂTU –6,714** –7,775*** –4,260 –3,018

(2,804) (2,448) (3,046) (12,037)

Regression adjustment
ÂTE –6,132*** –6,218** –4,952* –4,930

(1,644) (2,534) (2,996) (3,073)
ÂTT –3,417*** –69 623 796

(628) (598) (628) (639)
ÂTU –6,163*** –6,289** –5,017* –4,996

(1,662) (2,561) (3,030) (3,108)

Demographic controls X X X
Earnings in 1974 X
Earnings in 1975 X X X

ρ̂ = P̂ (d = 1) 0.011 0.011 0.011 0.011
Observations 16,177 16,177 16,177 16,177

Notes: The dependent variable is earnings in 1978. Demographic controls include age, age squared, years
of schooling, and indicators for married, high school dropout, black, and Hispanic. For treated individuals,
earnings in 1974 correspond to real earnings in months 13–24 prior to randomization, which overlaps with
calendar year 1974 for a number of individuals. For “matching on the LPM propensity score” and “matching
on the logit propensity score,” estimation is based on nearest-neighbor matching on the estimated propensity
score (with a single match). The propensity score is estimated using a linear probability model (LPM) or
a logit model. For “regression adjustment,” estimation is based on the estimator discussed in Kline (2011).
Huber–White standard errors (regression adjustment) and Abadie–Imbens standard errors (matching) are in
parentheses. Abadie–Imbens standard errors ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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E2 The Effects of Cash Transfers on Longevity

Figure E2.1: WLS Estimates of the Effects of Cash Transfers on Longevity
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Notes: The vertical axis represents WLS estimates of the effect of cash transfers on
log age at death using the model in equation (1) in the main text and the specification
in column 1 of Table 2, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.

28



Figure E2.2: WLS Estimates of the Effects of Cash Transfers on Longevity
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Notes: The vertical axis represents WLS estimates of the effect of cash transfers on
log age at death using the model in equation (1) in the main text and the specification
in column 2 of Table 2, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E2.3: WLS Estimates of the Effects of Cash Transfers on Longevity
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Notes: The vertical axis represents WLS estimates of the effect of cash transfers on
log age at death using the model in equation (1) in the main text and the specification
in column 3 of Table 2, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E2.4: WLS Estimates of the Effects of Cash Transfers on Longevity
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Notes: The vertical axis represents WLS estimates of the effect of cash transfers on
log age at death using the model in equation (1) in the main text and the specification
in column 4 of Table 2, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E2.5: Relationship Between Longevity and p (X)
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Notes: The vertical axis represents log age at death, as reported in the MP records.
The horizontal axis represents the LPM propensity score. The propensity score is
estimated using the specification in column 1 of Table 2. “Local mean smooth” is
estimated using the Epanechnikov kernel and a rule-of-thumb bandwidth.
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Figure E2.6: Relationship Between Longevity and p (X)
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Notes: The vertical axis represents log age at death, as reported in the MP records.
The horizontal axis represents the LPM propensity score. The propensity score is
estimated using the specification in column 2 of Table 2. “Local mean smooth” is
estimated using the Epanechnikov kernel and a rule-of-thumb bandwidth.
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Figure E2.7: Relationship Between Longevity and p (X)
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Notes: The vertical axis represents log age at death, as reported in the MP records.
The horizontal axis represents the LPM propensity score. The propensity score is
estimated using the specification in column 3 of Table 2. “Local mean smooth” is
estimated using the Epanechnikov kernel and a rule-of-thumb bandwidth.
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Figure E2.8: Relationship Between Longevity and p (X)
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Notes: The vertical axis represents log age at death, as reported on the death certificate.
The horizontal axis represents the LPM propensity score. The propensity score is
estimated using the specification in column 4 of Table 2. “Local mean smooth” is
estimated using the Epanechnikov kernel and a rule-of-thumb bandwidth.
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Table E2.1: Alternative Estimates of the Effects of Cash Transfers on Longevity

(1) (2) (3) (4)
Matching on the LPM propensity score

ÂTE 0.0110 0.0147* 0.0022 0.0011
(0.0070) (0.0089) (0.0099) (0.0098)

ÂTT 0.0106 0.0143 –0.0002 –0.0002
(0.0073) (0.0096) (0.0109) (0.0107)

ÂTU 0.0144** 0.0179** 0.0194** 0.0100
(0.0059) (0.0082) (0.0084) (0.0085)

Matching on the logit propensity score
ÂTE 0.0111 0.0183** –0.0019 –0.0054

(0.0073) (0.0081) (0.0166) (0.0166)
ÂTT 0.0107 0.0181** –0.0043 –0.0105

(0.0077) (0.0087) (0.0187) (0.0186)
ÂTU 0.0145** 0.0193** 0.0152* 0.0309***

(0.0059) (0.0083) (0.0085) (0.0083)

Regression adjustment
ÂTE 0.0105* 0.0100 0.0140 0.0130

(0.0063) (0.0070) (0.0110) (0.0110)
ÂTT 0.0096 0.0092 0.0133 0.0124

(0.0064) (0.0073) (0.0121) (0.0121)
ÂTU 0.0164*** 0.0160*** 0.0184*** 0.0170***

(0.0058) (0.0061) (0.0065) (0.0065)

State fixed effects X
County fixed effects X X
Cohort fixed effects X X X X
State characteristics X X X
County characteristics X
Individual characteristics X X X

ρ̂ = P̂ (d = 1) 0.875 0.875 0.875 0.875
Observations 7,860 7,859 7,859 7,857

Notes: The dependent variable is log age at death, as reported in the MP records (columns 1 to 3) or on the death
certificate (column 4). State characteristics include manufacturing wages, age of school entry, minimum age for
work permit, an indicator for a continuation school requirement, state laws concerning MP transfers (work re-
quirement, reapplication requirement, and maximum amounts for first and second child), and log expenditures
on education, charity, and social programs. County characteristics include average value of farm land, mean and
SD of socio-economic index, poverty rate, female lfp rate, and shares of urban population, widowed women,
children living with single mothers, and children working. Individual characteristics include child age at ap-
plication, age of oldest and youngest child in family, number of letters in name, and indicators for the number
of siblings, the marital status of the mother, and whether date of birth is incomplete. For “matching on the
LPM propensity score” and “matching on the logit propensity score,” estimation is based on nearest-neighbor
matching on the estimated propensity score (with a single match). The propensity score is estimated using a
linear probability model (LPM) or a logit model. For “regression adjustment,” estimation is based on the es-
timator discussed in Kline (2011). Huber–White standard errors (regression adjustment) and Abadie–Imbens
standard errors (matching) are in parentheses. Abadie–Imbens standard errors ignore that the propensity score
is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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