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Abstract: We revisit the problem of estimating the local average treatment effect
(LATE) and the local average treatment effect on the treated (LATT) when control
variables are available, either to render the instrumental variable (IV) suitably exoge-
nous or to improve precision. Unlike previous approaches, our doubly robust (DR)
estimation procedures use quasi-likelihood methods weighted by the inverse of the
IV propensity score – so-called inverse probability weighted regression adjustment
(IPWRA) estimators. By properly choosing models for the propensity score and out-
come models, fitted values are ensured to be in the logical range determined by the
response variable, producing DR estimators of LATE and LATT with appealing small
sample properties. Inference is relatively straightforward both analytically and using
the nonparametric bootstrap. Our DR LATE and DR LATT estimators work well in
simulations. We also propose a DR version of the Hausman test that can be used to
assess the unconfoundedness assumption through a comparison of different estimates
of the average treatment effect on the treated (ATT) under one-sided noncompliance.
Unlike the usual test that compares OLS and IV estimates, this procedure is robust
to treatment effect heterogeneity.

∗This article supersedes “Doubly Robust IV Estimation of Local Average Treatment Effects” by
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1 Introduction

Instrumental variables estimation of causal effects has a long history in applied econo-

metrics. In introductory econometrics courses, the properties of the instrumental

variables (IV) estimator are often taught within the framework of a linear model

with a constant coefficient. When applied in a treatment effects setting, the constant

coefficient assumption is equivalent to assuming a constant treatment effect in the

population. In their pioneering work, Imbens and Angrist (1994) [IA (1994)] used

a potential outcomes framework to study the probability limit of the simple IV es-

timator in the setting of a binary treatment and binary instrumental variable. IA

(1994) showed that, under reasonable assumptions, the IV estimator consistently es-

timates a parameter now known as the local average treatment effect (LATE), which

is the average treatment effect over the subpopulation of units that comply with their

randomized eligibility. Angrist, Imbens and Rubin (1996) explicitly embedded the

LATE setup within the setting of the Rubin Causal Model, showed how the IV es-

timand identifies a causal parameter under certain assumptions, and discussed the

consequences of violations of those assumptions. Vytlacil (2002) demonstrated that

the LATE framework is equivalent to a nonparametric selection model with a weakly

separable selection equation.

In many applications of IV, the instrument is not randomly assigned, in which

case the simple IV estimator – also known as the Wald estimator – is no longer

consistent for LATE. In some cases, conditioning on observed covariates, or controls,

can render the IV as good as randomly assigned within subpopulations defined by

the covariate values. In effect, the IV is assumed to satisfy an unconfoundedness

assumption conditional on observables. In most textbook treatments of instrumental

variables that include control variables X, these are added linearly and then they act
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as their own instruments. In the treatment effects context, it may seem appealing to

include interactions of the binary treatment variable, W , with the (suitably centered)

covariates X. If Z is the instrument for W , a natural instrument for W ·X is Z ·X.

Wooldridge (2010, Procedure 21.2) describes an IV procedure that exploits the binary

nature of W by using a binary response model for p (Z,X) ≡ P (W = 1|Z,X) and

then using p̂ (Zi, Xi) and p̂ (Zi, Xi) · Xi as instruments in the linear equation that

includes Wi and Wi ·Xi.

Adding covariates to a linear equation and interacting them with the treatment

indicator seems like a natural way to account for nonrandom assignment of the instru-

ment while allowing for heterogeneous treatment effects. Unfortunately, no results

imply that this procedure generally uncovers the LATE. By contrast, Tan (2006) and

Frölich (2007) independently obtained a useful identification result for LATE when

covariates are needed in order to render the IVs ignorable. Frölich (2007) used his

identification result to obtain consistent, asymptotically normal estimators of LATE.

As a practical matter, however, the need to estimate four conditional mean functions

nonparametrically makes Frölich’s estimator difficult to implement, even with just a

small number of covariates. Plus, issues of how to handle discrete, continuous, and

mixed control variables need to be addressed.

On the other hand, the estimation approach proposed by Tan (2006) is based

on so-called augmented inverse probability weighting (AIPW) estimators. AIPW is

a standard class of doubly robust (DR) estimators, that is, estimators that remain

consistent under misspecification of either of the two (sets of) parametric working

models on which they are based. However, as discussed in Kang and Schafer (2007),

AIPW estimators, as commonly applied, are often unstable in practice, as is standard

inverse probability weighting (IPW). One reason is that these estimators are often

based on weights in the weighted averages that do not sum to unity; in other words,
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the weights are not normalized.

Following Tan (2006) and Frölich (2007), many other estimation approaches for

LATE have been proposed, some of which are doubly robust and some are not. For

example, Donald, Hsu and Lieli (2014) [DHL (2014)] studied the aforementioned IPW

estimators, which are consistent when the instrument propensity score is correctly

specified but not otherwise. Admittedly, DHL (2014) suggested nonparametric series

estimators, which in theory resolves the issues of misspecification, but in practice their

approach would be applied in a flexible parametric framework by most practitioners.

Similar to Tan (2006), other DR estimators have also been based on the AIPW

approach, and this includes both those proposed in Ogburn, Rotnitzky and Robins

(2015) and several estimators that employ high-dimensional selection, including those

in Belloni et al. (2017), Chernozhukov et al. (2018), and Sun and Tan (2022), which

often also rely on sample splitting to allow for high-dimensional covariates. In recent

work, Heiler (2022) discussed a DR extension of a particular balancing estimator of

LATE while Singh and Sun (2022) combined “kappa weighting” (Abadie, 2003) and

high-dimensional selection to obtain DR estimators of LATE and related parameters.

Our primary purpose in this paper is to propose a new class of doubly robust

estimators of LATE that are simple to implement and avoid the shortcomings of non-

parametric conditional mean estimation and AIPW methods. In particular, using

the identification result in Frölich (2007) and building also on Wooldridge (2007) and

S loczyński and Wooldridge (2018), we show how estimators that use the inverse of

the instrument propensity score to weight the objective functions for estimating the

treatment propensity score and the conditional mean of the response allow consistent

estimation of LATE. These estimators, now commonly labeled inverse probability

weighted regression adjustment (IPWRA) estimators, have the same double robust-

ness property of AIPW estimators. An advantage of IPWRA estimators is that one
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can choose functional forms so that the estimated conditional probability and condi-

tional mean functions are guaranteed to produce predictions within the logical range

of the outcomes. This feature of IPWRA makes the resulting estimators of LATE

have good finite sample properties. Moreover, the estimators are easy to obtain and

inference is relatively straightforward. Using a similar approach, we also propose DR

estimators for the local average treatment effect on the treated (LATT).

In Section 2 we provide the setting, define the LATE parameter, and summarize

the identification result in Frölich (2007). We also study identification of LATT,

beginning with a result due to Frölich and Lechner (2010) but modifying it to obtain

a simple representation of this parameter that leads naturally to DR estimation.

Section 3 shows how the IPWRA approach can be used to identify the four ex-

pectations appearing in LATE when conditioning on covariates. We modify existing

arguments to account for the fact that the conditional means we need to estimate for

the outcome are not of the potential outcomes. Nevertheless, the IPWRA approach

still identifies the required unconditional means. This section carries out a similar

analysis for LATT where we are able to relax the assumptions used to identify LATE.

Section 4 shows how to obtain standard errors for the DR LATE and DR LATT

estimators that account for the sampling error in all estimation steps. Section 5

shows how to modify the Hausman-type test proposed by DHL (2014) to allow for

DR estimation. In the case with one-sided noncompliance, if assignment is uncon-

founded then LATT is the same as the average treatment effect on the treated (ATT).

Therefore, we can obtain two DR estimators using IPWRA estimation schemes: one

that uses an instrumental variable and another that employs unconfoundedness condi-

tional on covariates. We show how to test the null hypothesis that the two estimators

consistently estimate the same parameter.

Section 6 revisits two empirical studies. First, we use the data in Abadie (2003) to
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produce LATE and LATT estimates for the effect of participating in a 401(k) pension

plan on net financial wealth. We also look at the causal effect of participating in a

401(k) plan on participation in individual retirement accounts (IRAs). In this case,

we compare IV estimates of a linear probability model with our DR estimates that

recognize the binary nature of the IRA participation decision. Using our proposed

method, we find that 401(k) participation has a positive effect on net financial assets

and the probability of IRA participation. This is despite the fact that the correspond-

ing AIPW (for net financial assets) and IPW estimates (for both outcomes) are much

smaller and imprecise. Even though both AIPW and IPWRA are doubly robust, they

lead to different conclusions about the LATE on net financial assets.

Second, we also revisit Finkelstein et al. (2012) and Taubman et al. (2014), and

use the data from the Oregon Health Insurance Experiment to study the effects

of Medicaid on emergency room visits. Like in previous work, our estimates are

positive, which suggests, perhaps counterintuitively, that access to health insurance

may increase the utilization of emergency rooms. Our novel empirical contribution

is that LATT, the effect on the treated compliers, is larger than the usual LATE, at

least along the extensive margin. This is because treatment effects appear to be more

pronounced in larger households (cf. Denteh and Liebert, 2022), which are also more

likely to be treated.

Section 7 presents simulation evidence on the performance of several estimators

of LATE, including IV, regression adjustment (RA), IPW, AIPW, and IPWRA. The

performance of our proposed method, IPWRA, is very satisfying. It is never sub-

stantially more biased than the competing estimators while its precision is better

than that of AIPW, which is the only alternative that shares the double robustness

property of IPWRA. Finally, Section 8 concludes.
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2 Identification of LATE and LATT

The potential outcomes setting in this paper is the one pioneered by IA (1994).

Eventually, we will assume access to a random sample from the population, and so all

assumptions can be stated in terms of random variables representing the population

of interest.

For a binary intervention, let Y (0) be the potential outcome in the control state

and Y (1) the potential outcome in the treated state. The observed binary treatment

indicator is W , where W = 1 denotes treatment and W = 0 denotes control. We

have access to a binary instrumental variable, Z. As in IA (1994), there are poten-

tial treatment statuses based on the assignment of the instrument (which is often

eligibility): W (1) is participation status when a unit is made “eligible” and W (0) is

participation status in the “ineligible” state. This framework allows for the possi-

bility that units do not comply with their assigned “eligibility.” For example, some

workers, if selected to participate in a job training program (Z = 1), may choose not

to participate [W (1) = 0].

The observed outcome Y is a function of the observed treatment variable and the

potential outcomes corresponding to the treatment and control status:

Y = WY (1) + (1−W )Y (0).

Further, the realized treatment status can be written in terms of the instrument Z

and the potential treatment statuses:

W = ZW (1) + (1− Z)W (0). (1)

According to the relationship between the potential treatment status and the bi-
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nary instrument, the population can be divided into four subpopulations: compliers,

always-takers, never-takers, and defiers. From the observed dataset one cannot iden-

tify the group to which an individual belongs since only the pair (W,Z) is observed.

For example, if Z = 1 and W = 1, the individual is either a complier or an always-

taker. Always-takers and never-takers do not change their treatment behavior when

the assignment of the IV changes. The only subpopulations that can be induced into

changing W through a variation in Z are the defiers and compliers.

Generally, the treatment effect of interest can be defined either as the impact of

the treatment on the outcome for the defiers [W (1) < W (0)] or for the compliers

[W (1) > W (0)]. Following the literature, we focus on average treatment effects on

compliers under the assumption that defiers do not exist. The local average treat-

ment effect (LATE) is the expected difference between the potential outcomes for the

subpopulation of compliers:

τLATE = E[Y (1)− Y (0)|W (1) > W (0)]. (2)

Compliers are members of a hypothetically defined subpopulation and cannot be

identified from observed data without further assumptions.

As in much of the literature since IA (1994) – including several papers discussed in

the introduction – we assume that we have (pre-treatment) covariates, X, that render

the instrumental variable suitably exogenous when conditioned on. The support of X

is indicated by X . With these covariates, identification of τLATE is possible if certain

assumptions are met.

The first assumption is that, conditional on X, the instrumental variable has no

direct effect on the potential outcomes; its effect can come only through the treatment

assignment. The formal statement requires indicating two arguments in the potential
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outcomes, Y (w, z) for w, z ∈ {0, 1}.

Assumption 1 (Exclusion Restriction). For w ∈ {0, 1} and almost all x ∈ X ,

P [Y (w, 1) = Y (w, 0) | X = x] = 1. � (3)

Assumption 1 justifies labeling the potential outcomes using a single index that indi-

cates actual treatment status because we condition on X in stating ignorability of the

instruments. In what follows, we use Y (w) as the potential outcome for treatment

status w ∈ {0, 1}.

Assumption 2 (Ignorability of Instrument). Conditional on X, the potential out-

comes are jointly independent of Z:

[Y (0), Y (1),W (0),W (1)] ⊥ Z | X. � (4)

Assumption 2 requires that, conditional on observed confounders, the instrument can

be regarded as random.

Assumption 3 (Monotonicity).

P[W (1) ≥ W (0)] = 1. �

This monotonicity assumption is standard in the literature: it says that there are

no defiers in the population (or that the group is so small it has probability zero).

It is equivalent to a conditional statement, namely, P[W (1) ≥ W (0)|X = x] = 1 for

almost all x ∈ X . In other words, if Assumption 3 holds, P[W (1) ≥ W (0)|X = x] < 1

is possible only on a subset of x ∈ X with measure zero. Formally, this claim is

equivalent to the proposition that for a random variable R ≥ 0, E (R) = 0 if and only
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if P (R = 0) = 1.

The next assumption requires the existence of compliers in the population.

Assumption 4 (Existence of Compliers).

P[W (1) > W (0)] > 0. �

When we partition the population on the basis of the covariates X, Assumption 4

implies that, for some subset C ⊂ X with P (C) > 0, P[W (1) > W (0)|X = x] > 0

if x ∈ C. This follows by iterated expectations: If 1l [W (1) > W (0)] has positive

expectation then its expectation conditional on X must be positive with nonzero

probability. The subset C defines the subpopulation of compliers based on the values

of X.

The requisite overlap assumption is stated in terms of the propensity score in-

volving the instrumental variable, sometimes referred to as the instrument propensity

score.

Assumption 5 (Overlap for LATE). For almost all x ∈ X ,

0 < P (Z = 1|X = x) < 1. �

IA (1994) show that if Assumptions 1–5 hold without conditioning on X, then τLATE

is identified as

τLATE =
E[Y |Z = 1]− E[Y |Z = 0]

E[W |Z = 1]− E[W |Z = 0]
. (5)

In that case, given a random sample from the population, τLATE can be consistently

estimated by replacing the expectations in (5) with the corresponding sample aver-

ages. This simple estimator is the well-known Wald estimator; it is also obtained by
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estimating the simple linear equation Y = α + βW + U by instrumental variables

using instruments (1, Z). In other words, β̂IV = τ̂LATE. In some cases, one cannot

participate (W = 1) unless assigned to the treatment (Z = 1), in which case the sec-

ond term in the denominator of τLATE is zero: E[W |Z = 0] = P[W = 1|Z = 0] = 0.

This is the case in the application in Abadie (2003) (also used in several subsequent

studies), where an employee cannot participate in an employer-sponsored pension

plan unless the employer offers such a plan. In other applications, Z = 1 implies

W = 1 (no never-takers), in which case the first term in the denominator of τLATE

is unity. This situation arises in Angrist and Evans (1998) when, in a population of

women with at least two children, the “treatment” is having more than two children

and the binary instrument indicates whether the second birth was a multiple birth.

In many cases the instrumental variable candidate, Z, is not truly randomized,

but we might be willing to assume it is as good as randomized conditional on X.

Then, Assumptions 1–5 imply that we can identify τLATE. The following theorem is

due to Frölich (2007, Theorem 1). Frölich and Lechner (2010) relax the assumptions

somewhat but not in a way that makes the theorem clearly more applicable.

Theorem 1 (Identification of LATE). Under Assumptions 1–5,

τLATE =
E [E (Y |X,Z = 1)− E (Y |X,Z = 0)]

E [E (W |X,Z = 1)− E (W |X,Z = 0)]
=

E[µ1(X)− µ0(X)]

E[ρ1(X)− ρ0(X)]
, (6)

where

µ0(X) ≡ E (Y |X,Z = 0) (7)

µ1(X) ≡ E (Y |X,Z = 1) (8)
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and

E (W |X,Z = 0) = E[W (0)|X] = ρ0(X) (9)

E (W |X,Z = 1) = E[W (1)|X] = ρ1(X). � (10)

As discussed in Frölich (2007), the result in equation (6) suggests that one can es-

timate each of the four conditional mean functions, E (Y |X,Z = 0), E (Y |X,Z = 1),

E (W |X,Z = 0), and E (W |X,Z = 1), using nonparametric methods, and then av-

erage the estimates across i to estimate the unconditional means. Especially when

the dimension of X is large, nonparametric estimation is not attractive, and infer-

ence is also complicated. One of the estimators considered by Tan (2006) estimates

the numerator and denominator in (6) using augmented inverse probability weight-

ing (AIPW) estimators. AIPW estimators are popular in the case of unconfounded

assignment but simulations show they are not always well behaved even in somewhat

large samples (e.g., Kang and Schafer, 2007). S loczyński and Wooldridge (2018) pro-

vide a recent overview of the debate on the merits of AIPW approaches. One issue

that apparently has not been noted is that commonly used AIPW estimators – like

those in Tan (2006) – implicitly use weights in the weighted averages that do not

sum to unity; in other words, the weights are not normalized. Because many of the

estimators summarized in the introduction have an AIPW flavor, they suffer from

the same problem – whether they are based on parametric approaches or machine

learning algorithms. In the next section we show how to use a class of DR estimators

based on weighted quasi-maximum likelihood estimation (QMLE) to estimate the

four means that appear in (6). This possibility was already indicated by S loczyński

and Wooldridge (2018) but without any of the details that we consider here.

There is also some interest in estimating the local average treatment effect on the
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treated (LATT), formally defined as

τLATT = E[Y (1)− Y (0) | W (1) > W (0),W = 1]. (11)

Frölich and Lechner (2010) study identification of this parameter and show that,

under the assumptions in Theorem 1,

τLATT =
E {[µ1(X)− µ0(X)]η(X)}
E {[ρ1(X)− ρ0(X)]η(X)}

, (12)

where η(x) is the instrument propensity score:

η(x) ≡ P (Z = 1|X = x) , x ∈ X . (13)

For our purposes, we use a different representation of τLATT . We state this theorem

under the exclusion and ignorability assumptions in Theorem 1 even though we could

relax some of the assumptions. It is useful to explicitly relax the overlap assumption.

Assumption 6 (Overlap for LATT). For almost all x ∈ X ,

P (Z = 1|X = x) < 1. �

The overlap assumption for LATT means that there can be subsets of the population,

based on the values of the control variables X, where units are not eligible for the

treatment.

Theorem 2 (Identification of LATT). Under Assumptions 1–4 and Assumption 6,

τLATT =
E (Y |Z = 1)− E[µ0(X)|Z = 1]

E (W |Z = 1)− E[ρ0(X)|Z = 1]
. � (14)
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Proof. By iterated expectations and (12),

τLATT =
E {[µ1(X)− µ0(X)]Z}
E {[ρ1(X)− ρ0(X)]Z}

and so, dividing the numerator and the denominator by P (Z = 1) > 0,

τLATT =
E {[µ1(X)− µ0(X)]|Z = 1}
E {[ρ1(X)− ρ0(X)]|Z = 1}

.

By definition of µ0(x) and µ1(x), we can write

Y = (1− Z)µ0(X) + Zµ1(X) + U, E (U |X,Z) = 0.

It follows that

E (Y |Z = 1) = E [µ1(X)|Z = 1] .

Also, W = (1− Z)W (0) + ZW (1) and so, by ignorability,

E (W |X,Z = 1) = E [W (1)|X,Z = 1] = E [W (1)|X] = ρ1(X).

Iterated expectations implies E (W |Z = 1) = E [ρ1(X)|Z = 1]. Therefore, we can

write τLATT as in (14). The overlap assumption ensures that E[µ0(X)|Z = 1] is

identified and ignorability and overlap ensure E[ρ0(X)|Z = 1] is identified.

As we show in the next section, the representations in (6) and (14) permit doubly ro-

bust estimation of τLATE and τLATT using IPWRA estimators, providing a unification

that makes the estimation approaches transparent and simple.
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3 Doubly Robust Estimation of LATE and LATT

We now turn to estimation of τLATE and τLATT using a particular class of doubly

robust (DR) estimators, starting with the former. The approach we take allows us

to tailor the analysis based on the nature of the observed outcome, Y , by choosing

a suitable conditional mean function. In particular, using the identification results

in S loczyński and Wooldridge (2018), we extend Wooldridge (2007)’s approach of

combining inverse probability weighting (IPW) and regression adjustment (RA) using

a particular quasi-maximum likelihood estimator. These estimators are commonly

referred to as IPWRA estimators.

3.1 Estimation of LATE

The identification result in equation (6) shows that, in order to consistently estimate

τLATE, we need to consistently estimate the following four quantities:

θ1 = E[µ1(X)], θ0 = E[µ0(X)], (15)

π1 = E[ρ1(X)], π0 = E[ρ0(X)]. (16)

Because of the representation of W in equation (1), we can immediately apply the DR

results on IPWRA estimation from Wooldridge (2007) and S loczyński and Wooldridge

(2018). The approach first requires estimating a binary response model for the instru-

ment propensity score defined in (13). By the overlap assumption (Assumption 5),

0 < η(x) < 1 for all x ∈ X . The proposal here is to use a standard parametric model

for η(x), as is common in the literature when estimating a propensity score func-

tion. Probably most popular is a flexible logit model, but it could be a probit model,

heteroskedastic probit model, or something else. Let G(x, γ) denote the parametric
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model for η(x). Under very general assumptions, the Bernoulli quasi-maximum like-

lihood estimator, γ̂, converges in probability to some value, γ∗, which is sometimes

called the quasi-true value or pseudo-true value. If the model for η(x) is correctly

specified then G(x, γ∗) = P(Z = 1|X = x). At this point, one would use the fitted

probabilities, G(Xi, γ̂), to study the LATE overlap condition using standard methods;

for a detailed discussion, see Imbens and Rubin (2015, Chapter 14).

After estimating the model for P(Z = 1|X), next we estimate models for ρ0(x)

and ρ1(x), as defined in (9) and (10). These are estimated by separate logit models

for W for the Zi = 0 and Zi = 1 subgroups, applying the inverse probability weights

1/ [1−G(Xi, γ̂)] and 1/G(Xi, γ̂), respectively. The reason for using logit models for

ρ0(x) and ρ1(x) is to ensure that the resulting estimators of the expected probabilities,

π0 and π1, are doubly robust, as discussed in Wooldridge (2007) and S loczyński and

Wooldridge (2018). The logit function is the canonical link function for the Bernoulli

distribution, and that ensures the DR property. Let Λ(ω̂0+Xiδ̂0) and Λ(ω̂1+Xiδ̂1) be

the logit fitted values, where the estimated parameters are obtained from the Zi = 0

and Zi = 1 subsamples, respectively. For notational ease we show the indexes as

linear functions of Xi but, naturally, any functions of the covariates may appear in

the logit models. In principle, one could use different functions of Xi, say h0(Xi) and

h1(Xi), inside the logistic function, but that seems to be rare in practice.

Having estimated the separate logit models by weighted Bernoulli QMLE, the DR

estimates of π0 and π1 are

π̂0 = N−1
N∑
i=1

Λ(ω̂0 +Xiδ̂0), π̂1 = N−1
N∑
i=1

Λ(ω̂1 +Xiδ̂1).

From Wooldridge (2007), under standard regularity conditions, π̂z is consistent for πz

if the model for P(Z = 1|X) is correct or if the models for P(W = 1|X,Z = 0) and
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P(W = 1|X,Z = 1) are correct. Naturally, if we know P(W = 1|Z = 1) = 1 then π̂1

is replaced with one and if we know P(W = 1|Z = 0) = 0 then π̂0 is replaced with

zero (the more likely scenario when Z is eligibility and W is participation).

Next, we show how to obtain DR estimators of θ0 and θ1. In doing so, it is useful

to write Y with a zero conditional mean error term:

Y = (1− Z)µ0(X) + Zµ1(X) + U, E (U |X,Z) = 0,

where µ0(X) and µ1(X) are defined in (7) and (8). Note that this is not the usual

representation that leads to DR estimation because µ0(X) and µ1(X) are not the

potential outcome conditional means; rather, these are the conditional mean functions

for the (observed) Z = 0 and Z = 1 subpopulations, respectively. Therefore, we must

modify the usual double robustness argument.

Let m(α0+Xβ0) and m(α1+Xβ1) be the parametric models for µ0(X) and µ1(X).

Again, for notational ease we show these depending on an index linear in X, whereas

they could depend on (different) transformations of X inside the function m (·). We

assume that the function m (·) is based on the canonical link function for the chosen

quasi-log likelihood (QLL) in the linear exponential family – which is why we show

the mean function to have the index form. If Y is a binary or fractional response

then we couple the Bernoulli QLL with the logistic mean function – just as when we

estimate ρ0(x) and ρ1(x). If Y ≥ 0, the appropriate combination is m (·) = exp (·)

with the Poisson QLL. When Y has no particular features worth exploiting, one

commonly uses m (α + xβ) = α+ xβ and the least squares objective function (which

corresponds to the normal QLL).

As in the case of estimating the parametric models for ρ0(x) and ρ1(x), the ob-

jective functions for estimating (α0, β0) and (α1, β1) are weighted by 1/ [1−G(Xi, γ̂)]
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and 1/G(Xi, γ̂) for the Zi = 0 and Zi = 1 subsamples, respectively. When the mean

function corresponds to the canonical link function in the chosen linear exponential

family (LEF), the first-order conditions for (α̂1, β̂1) can be written as

N∑
i=1

{
Zi

G(Xi, γ̂)

[
Yi −m(α̂1 +Xiβ̂1)

]}
= 0 (17)

N∑
i=1

{
Zi

G(Xi, γ̂)
X ′i

[
Yi −m(α̂1 +Xiβ̂1)

]}
= 0. (18)

Under general conditions, (α̂1, β̂1) converge in probability to the (unique) solutions

(α∗1, β
∗
1) to the weighted population moment conditions

E
{

Z

G(X, γ∗)
[Y −m(α∗1 +Xβ∗1)]

}
= 0 (19)

E
{

Z

G(X, γ∗)
X ′ [Y −m(α∗1 +Xβ∗1)]

}
= 0. (20)

We now show that the solutions to these FOCs result in doubly robust estimators of

θ0 and θ1. We show the argument for the latter with an almost identical argument

for θ0.

As discussed in Wooldridge (2007), when the weights depend on conditioning

variables – in this case, X – and the relevant feature of the conditional distribution

is correctly specified – in this case, the conditional mean µ1(X) ≡ E (Y |X,Z = 1)

– weighting a suitably chosen objective function does not alter consistency of the

estimators. We can see this directly from the population FOCs. Assume there are

values (α∗1, β
∗
1) such that

E (Y |X,Z = 1) = m(α∗1 +Xβ∗1),
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so that the conditional mean is correctly specified. Then ZY = Zm(α∗1 +Xβ∗1) +ZU

and, since E (ZU |X,Z) = 0, it follows immediately that

E {Z [Y −m(α∗1 +Xβ∗1)] |X} = 0.

Because G(X, γ∗) > 0 is a function of X, it follows that

E
{

Z

G(X, γ∗)
[Y −m(α∗1 +Xβ∗1)]

∣∣∣∣X} = 0.

Given G(X, γ∗) > 0 and sufficient variability in X when Z = 1, the solutions to (19)

and (20), (α∗1, β
∗
1), are unique. By iterated expectations,

θ1 = E [m(α∗1 +Xβ∗1)] .

Similarly, θ0 = E[m(α∗0 + Xβ∗0)] when E (Y |X,Z = 0) = m(α∗0 + Xβ∗0). This is the

first half of the double robustness result, which does not actually use the assumption

of a canonical link in the linear exponential family.

For the other part of DR, it is useful to express the population FOCs somewhat

differently. Plug in for Y and use ZY = Zµ1(X) + ZU to get

E
[

Z

G(X, γ∗)
[µ1(X) + U −m(α∗1 +Xβ∗1)]

]
= 0

E
[

Z

G(X, γ∗)
X ′[µ1(X) + U −m(α∗1 +Xβ∗1)]

]
= 0

or, because E (U |X,Z) = 0,

E
[

Z

G(X, γ∗)
[µ1(X)−m(α∗1 +Xβ∗1)]

]
= 0 (21)
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E
[

Z

G(X, γ∗)
X ′[µ1(X)−m(α∗1 +Xβ∗1)]

]
= 0. (22)

By iterated expectations, these equations are equivalent to

E
[

η(X)

G(X, γ∗)
[µ1(X)−m(α∗1 +Xβ∗1)]

]
= 0 (23)

E
[

η(X)

G(X, γ∗)
X ′[µ1(X)−m(α∗1 +Xβ∗1)]

]
= 0. (24)

When G(x, γ) is correctly specified, η(X) = G(X, γ∗), and the first population mo-

ment condition becomes

E [µ1(X)−m(α∗1 +Xβ∗1)] = 0.

It follows immediately that θ1 = E[m(α∗1 +Xβ∗1)], even though the conditional mean

function need not be correctly specified. This part of the DR result uses the assump-

tion that we have chosen the canonical link function for the chosen LEF density. The

same argument holds for θ0. Except for adding standard regularity conditions, we

have established consistency of the DR estimators that combine inverse probability

weighting (IPW) and regression adjustment (RA), where RA is defined generally to

include QMLEs in the LEF with a canonical link function.

Because the LEF/canonical link combinations play an important role in DR esti-

mation, we summarize the common choices for the quasi-likelihoods and mean func-

tions in Table 1.

The first entry in Table 1 simply means using weighted least squares with lin-

ear conditional mean functions, but the weights here are based on the instrument

propensity score, chosen to achieve double robustness, and have nothing to do with

heteroskedasticity. When Y is binary or fractional (the second entry), a logistic con-
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Table 1: Combinations of QLLFs and Canonical Link Functions

Support Restrictions Mean Function Quasi-LLF
None Linear Gaussian

Y (w) ∈ [0, 1] (binary, fractional) Logistic Bernoulli
Y (w) ∈ [0, B] (count, corner) Logistic Binomial

Y (w) ≥ 0 (count, continuous, corner) Exponential Poisson

ditional mean function is more attractive because it ensures fitted values are in the

unit interval. For example, Yi could be the fraction of retirement savings held in the

stock market or the fraction of students passing a standardized test. The third entry

allows for corners at zero and some unit-specific, known upper bound, Bi. This Bi

should be a conditioning variable – like the elements of Xi. For example, Yi could be

the amount of income put into retirement with Bi being an individual-specific bound

determined by legal restrictions. The final entry is important across many kinds of

response variables that are nonnegative but have no natural upper bound. These

outcomes could be count variables but they could be roughly continuous or have an

atom at zero.

In what follows, we summarize the steps for doubly robust estimation of τLATE

using IPWRA.

Procedure DR LATE.

1. Estimate a flexible binary response model for the instrument propensity score,

η (x) = P (Z = 1|X = x); denote the fitted probabilities G (Xi, γ̂). In many

cases, one would use a flexible logit. Overlap needs to be studied at this step.

2. Use weighted Bernoulli QMLE to estimate separate (flexible) logit models for

P(W = 1|X,Z = 0) and P(W = 1|X,Z = 1) (i.e., only using the units with

Zi = 0 and Zi = 1, respectively), where the weights in the former case are

1/ [1−G (Xi, γ̂)], and in the latter case, 1/G (Xi, γ̂). These produce
(
ω̂0, δ̂0

)
,
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(
ω̂1, δ̂1

)
, and the fitted probabilities Λ(ω̂0 +Xiδ̂0) and Λ(ω̂1 +Xiδ̂1).

3. Choose conditional mean models for E(Y |X,Z = 0) and E(Y |X,Z = 1) that

reflect the nature of Y . These should correspond to the canonical link functions

for the chosen LEF quasi-log likelihood. Use weights 1/ [1−G (Xi, γ̂)] to obtain

the weighted QMLEs of (α0, β0) and weights 1/G (Xi, γ̂) to obtain the weighted

QMLEs of (α1, β1). (As above, this only uses the units with Zi = 0 and then

Zi = 1, respectively.) These produce the fitted mean functions m(α̂0 + Xiβ̂0)

and m(α̂1 +Xiβ̂1).

4. Obtain the DR estimator of τLATE as

τ̂DRLATE =
N−1

∑N
i=1

[
m(α̂1 +Xiβ̂1)−m(α̂0 +Xiβ̂0)

]
N−1

∑N
i=1

[
Λ(ω̂1 +Xiδ̂1)− Λ(ω̂0 +Xiδ̂0)

] . � (25)

The DR LATE estimator has the same form as Frölich (2007), but we use parametric

models that can exploit the nature of Y and we estimate the parameters in the

numerator and denominator using inverse probability weighting in order to achieve

double robustness. Consequently, the numerator of τ̂DRLATE is a DR ATE estimator

where Z (the instrument) is taken as the “treatment” and the outcome Y is the

response. The denominator is a DR ATE estimator where, again, Z is the “treatment”

and the actual treatment indicator, W , is the response. Obtaining the estimate for a

given sample is very easy using software packages that support IPWRA estimation.

3.2 Estimation of LATT

The IPWRA doubly robust estimators of τLATT require a different weighting scheme.

First, there is no need to model µ1(X) = E(Y |X,Z = 1) or ρ1(X) = E(W |X,Z = 1)

because, as shown in (14), we only need to estimate E(Y |Z = 1) and E(W |Z = 1).
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But we need DR estimators of E[µ0(X)|Z = 1] and E[ρ0(X)|Z = 1]. Following,

for example, S loczyński and Wooldridge (2018), we now show that the following

population FOC provides DR estimators of E[µ0(X)|Z = 1]:

E
{

(1− Z)G(X, γ∗)

[1−G(X, γ∗)]
[Y −m(α∗0 +Xβ∗0)]

}
= 0. (26)

Using the same argument as for τLATE, E (Y |X,Z = 0) = m(α∗0 +Xβ∗0) ensures that

E {(1− Z) [Y −m(α∗0 +Xβ∗0)] |X} = 0,

and then (26) holds by iterated expectations. Again, the weights are nonnegative

functions of X and so this does not change that the solutions to the FOCs are the

conditional mean parameters.

For the second half of DR, we use an argument similar to the case of LATE and

write the FOC as

E
{

(1− Z)G(X, γ∗)

[1−G(X, γ∗)]
[µ0 (X)−m(α∗0 +Xβ∗0)]

}
= 0.

By iterated expectations, this FOC is equivalent to

E
{

[1− η (X)]G(X, γ∗)

[1−G(X, γ∗)]
[µ0 (X)−m(α∗0 +Xβ∗0)]

}
= 0,

where η (X) = P (Z = 1|X). When the instrument propensity score is correctly

specified, η (X) = G(X, γ∗), this equation becomes

E {η (X) [µ0 (X)−m(α∗0 +Xβ∗0)]} = 0,
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and by iterated expectations, this is equivalent to

E {Z [µ0 (X)−m(α∗0 +Xβ∗0)]} = 0.

It now follows that

E [µ0 (X) |Z = 1] = E [m(α∗0 +Xβ∗0)|Z = 1]

even though the mean function is arbitrarily misspecified. This is the second half of

the DR result for τLATT .

Procedure DR LATT.

1. Using all of the data, estimate a flexible binary response model for the instru-

ment propensity score, η (x) = P (Z = 1|X = x); denote the fitted probabilities

G (Xi, γ̂). In many cases, one would use a flexible logit. The LATT overlap

assumption needs to be studied at this step.

2. Use the units with Zi = 0 and weighted Bernoulli QMLE to estimate a (flex-

ible) logit model for ρ0(X) = P(W = 1|X,Z = 0), where the weights are

G(Xi, γ̂)/ [1−G (Xi, γ̂)]. This produces
(
ω̂0, δ̂0

)
and the fitted probabilities

Λ(ω̂0 +Xiδ̂0).

3. Choose a conditional mean model for µ0(X) = E(Y |X,Z = 0) that reflects

the nature of Y . This should correspond to the canonical link function for

the chosen LEF quasi-log likelihood. Use the units with Zi = 0 and weights

G(Xi, γ̂)/ [1−G (Xi, γ̂)] to obtain the weighted QMLEs of (α0, β0). This pro-

duces the fitted mean, m(α̂0 +Xiβ̂0).
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4. Obtain the DR estimator of τLATT as

τ̂DRLATT =
Ȳ1 −N−11

∑N
i=1 Zim(α̂0 +Xiβ̂0)

W̄1 −N−11

∑N
i=1 ZiΛ(ω̂0 +Xiδ̂0)

, (27)

where Ȳ1 = N−11

∑N
i=1 ZiYi and W̄1 = N−11

∑N
i=1 ZiWi. �

The numerator of τ̂DRLATT is a DR estimator of ATT where Z is taken as the “treat-

ment” and Y is the outcome. Similarly, the denominator is a DR estimator of ATT

where Z is taken as the treatment and the actual treatment status, W , is the outcome.

4 Inference

To perform valid inference on τLATE and τLATT , such as obtaining confidence intervals,

we need to obtain standard errors for τ̂DRLATE and τ̂DRLATT that account for the

sampling error in all of the estimators and also the sample averages in (25) and

(27). One possibility is to use a resampling scheme. The most convenient is the

nonparametric bootstrap, which resamples all variables (and so accounts for sampling

error in the estimators and in the averages). Given a bootstrapped standard error we

can easily obtain asymptotically valid confidence intervals for τLATE and τLATT .

Because bootstrapping is not always desirable, we summarize a method of ob-

taining a valid standard error that stacks the first-order conditions for all estimation

problems and then obtains a proper standard error from the resulting generalized

method of moments framework. We explicitly consider how to do this for τ̂DRLATE.

To allow one to choose the treatment binary response models and the condi-

tional mean models in a way that does not (theoretically) lead to DR estimation, let

m0(X,α0, β0) and m1(X,α1, β1) be the parametric models for µ0(X) and µ1(X), re-

spectively, and let p0(X,ω0, δ0) and p1(X,ω1, δ1) be the parametric models for ρ0(X)
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and ρ1(X), respectively. G(X, γ) is the parametric model for P (Z = 1|X). Let τY |Z

and τW |Z be the numerator and denominator of the LATE, respectively, that is,

τY |Z = θ1 − θ0,

τW |Z = π1 − π0.

Let φ = (α0, β0, α1, β1, ω0, δ0, ω1, δ1, γ, τY |Z , τW |Z) and S = (Y,X,W,Z). The estima-

tors can be defined as a solution for the following sample moment equation:

N∑
i=1

ψ(Si, φ̂) = 0. (28)

By standard results for estimators that solve a first-order condition, it follows that:

√
N(φ̂− φ)

a∼ Normal
(
0, A−1V A−1

)
, (29)

where

A ≡ E
[
∂ψ(Si, φ)

∂φ′

]
,

V ≡ V[ψ(Si, φ)] = E[ψ(Si, φ)ψ(Si, φ)′].

Using the moment functions related to each parameter, the moment function ψ(Si, φ̂)
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in equation (28) can be written explicitly in the following way:

ψ(Si, φ) =



ψ1(Si, φ)

ψ2(Si, φ)

ψ3(Si, φ)

ψ4(Si, φ)

ψ5(Si, φ)

ψ6(Si, φ)

ψ7(Si, φ)



=



Zi

G(Xi,γ)

∂qy1 (Yi,Xi;α1,β1)

∂(α1,β1)

1−Zi

1−G(Xi,γ)

∂qy0 (Yi,Xi;α0,β0)

∂(α0,β0)

Zi

G(Xi,γ)

∂qw1 (Wi,Xi;ω1,δ1)

∂(ω1,δ1)

1−Zi

1−G(Xi,γ)

∂qw0 (Wi,Xi;ω0,δ0)

∂(ω0,δ0)

Zi−G(Xi,γ)
G(Xi,γ)(1−G(Xi,γ))

∂G(Xi,γ)
∂γ

m1(Xi, α1, β1)−m0(Xi, α0, β0)− τY |Z

p1(Xi, ω1, δ1)− p0(Xi, ω0, δ0)− τW |Z



,

where qyz (·) and qwz (·) are the objective functions for the estimation problems involving

Y and W , respectively. The moment condition ψ1(Si, φ) corresponds to the FOCs

given in equations (19) and (20). Similarly, ψ2(Si, φ) is the FOC for the estimation

of (α0, β0), and so on. The moment conditions ψ6(Si, φ) and ψ7(Si, φ) account for the

sampling variation in Xi in obtaining τ̂Y |Z and τ̂W |Z .

The asymptotic distribution of any parametric LATE estimator that uses con-

sistent estimators of τY |Z and τW |Z can be derived for a known joint asymptotic

distribution of these estimators τ̂Y |Z and τ̂W |Z , which satisfy:

√
N


 τ̂Y |Z
τ̂W |Z

−
τY |Z
τW |Z


 d→ Normal(0,Ω),

where Ω is the 2×2 variance-covariance matrix corresponding to the lower right block

27



of A−1V A−1. Given τ̂LATE = τ̂Y |Z/τ̂W |Z , we can apply the delta method to obtain

AVAR (τ̂DRLATE) =

(
1

τ 2W |Z

)
AVAR

(
τ̂Y |Z

)
+

(
τY |Z

(τW |Z)2

)2

AVAR
(
τ̂Y |Z

)
−
(

2τY |Z
(τW |Z)3

)
ACOV

(
τ̂Y |Z , τ̂W |Z

)
. (30)

The three asymptotic variance terms are available from Ω̂/N , and the other terms

are easily estimated by plugging in τ̂Y |Z and τ̂W |Z .

5 A Test Comparing LATT and ATT Estimators

In textbook treatment of instrumental variables, where the treatment effect is taken

to be constant, it is fairly common to construct a Hausman (1978) test for compar-

ing the IV estimator with the OLS estimator of the coefficients on the endogenous

explanatory variable, W . The idea is that, with good controls in X, maybe W is

unconfounded conditional on X, and the instrumental variables are not needed. In

practice, with cross-sectional data one uses a heteroskedasticity-robust version of the

Hausman test that is easily implemented using a control function regression; see, for

example, Wooldridge (2010, Section 6.3.1). In the traditional setting, efficiency con-

siderations are the primary reason for preferring OLS if the Hausman test does not

reject the null that W is unconfounded: the OLS estimator is typically much more

precise than the IV estimator.

Efficiency remains a valid consideration when treatment effects are heterogeneous,

as in the current setting, but the usual Hausman test is no longer valid because OLS

and IV estimands constitute different weighted averages of heterogeneous treatment

effects even under the null. Instead, if W is unconfounded conditional on X then,

with sufficient overlap, one can identify the average treatment effect on the treated
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(ATT) without requiring an instrumental variable. As shown by DHL (2014), under

one-sided noncompliance, LATT is the same as ATT. Therefore, it makes sense to

use doubly robust estimators of the ATT (DR ATT) that do not use an instrument

and compare that with the DR LATT estimates.

The ATT parameter is

τATT = E [Y (1)− Y (0) | W = 1] . (31)

Following S loczyński and Wooldridge (2018), we use DR estimators of τATT that are

natural given the form of the DR LATT estimators in Section 3. We no longer need

an instrument propensity score. Instead, let F (x, γ) be a model of the treatment

propensity score, P (W = 1|X = x). Given a random sample of size N , let γ̂ be the

(quasi-) MLE based on the Bernoulli log likelihood. As before, a typical choice of

F (x, γ) is a flexible logistic function.

Under the assumption that W is independent of Y (0) conditional on X and the

overlap assumption

P (W = 1|X = x) < 1 for almost all x ∈ X , (32)

we can obtain DR estimators of ATT using quasi-MLE in the LEF with a canonical

link function.

The conditional mean we need to estimate is E [Y (0)|X = x], and we again take

the model to have the index form, m(α0 + xβ0) (reusing earlier notation). As before,

we can choose m(α0+xβ0) to reflect the nature of the outcome variable Y (0). To stay

within the DR class of estimators using IPWRA, m(·) will be the identity, logistic,

or exponential function in the vast majority of applications.
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For consistent estimation of τATT we can get by with the conditional mean version

of unconfoundedness of W conditional on X,

E [Y (0)|W,X] = E [Y (0) |X] .

Under this assumption, if the mean is correctly specified then α0 and β0 are identified

by

E (Y |W = 0, X) = E [Y (0)|X] = m(α0 +Xβ0).

Letting q (y,m) be the quasi-log likelihood function, α̂0 and β̂0 solve the weighted

QMLE problem

max
a0,b0

N∑
i=1

F (Xiγ̂)

1− F (Xiγ̂)
(1−Wi) q (Yi,m(a0 +Xib0)) ,

where the estimation is done on the control sample and the weighting ensures the

DR property; see S loczyński and Wooldridge (2018). Given the estimates, the DR

estimator of τATT is

τ̂DRATT = Ȳ1 −N−11

N∑
i=1

Wi ·m(α̂0 +Xiβ̂0), (33)

where Ȳ1 is the average outcome over the treated units and N1 is now the number

of treated (not eligible) units. The estimator in (33) has a simple interpretation as

an imputation estimator, as the second term is a DR estimator of E [Y (0)|W = 1]

obtained by first imputing E [Yi (0) |Wi = 1, Xi] using the mean function estimated

from the Wi = 0 units. This DR estimator is pre-programmed in popular statistics

and econometrics packages.

Given τ̂DRLATT from Section 3 and τ̂DRATT in (33), we can test the null hypothesis
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that treatment is unconfounded given X, provided the instrument Z is such that one-

sided noncompliance holds so that τLATT = τATT . A formal comparison is based on

the statistic

τ̂DRLATT − τ̂DRATT
se (τ̂DRLATT − τ̂DRATT )

. (34)

Under the null hypothesis, we cannot say that τ̂DRATT is the efficient estimator in a

suitable class that includes τ̂DRLATT , and so the standard error se (τ̂DRLATT − τ̂DRATT )

does not simplify. Nevertheless, bootstrapping is computationally feasible, or one can

extend the calculations in Section 4 to obtain an analytical standard error. Even

without one-sided noncompliance, a similar test can also be constructed to assess

treatment effect heterogeneity by comparing DR LATE and DR LATT, or IV and

DR LATE, or IV and DR LATT estimates.

6 Empirical Applications

In this section we reanalyze the data in Abadie (2003) and Taubman et al. (2014) to

illustrate our new doubly robust estimators.

6.1 The Effects of 401(k) Retirement Plans

The 401(k) retirement plans were introduced in the US to increase saving for re-

tirement by allowing tax advantages for the contributions to the retirement account.

The policy-relevant empirical question is whether the 401(k) program is effective for

increasing savings or only crowds out other personal saving. Since the individuals

who participate in 401(k) plans are likely to have different saving preferences than

non-participating individuals, a simple comparison of savings of the two groups is

likely to provide an upward-biased estimate of the true effect. Different from other
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saving plans, 401(k) participation requires eligibility which, in turn, is determined

by the employer. Abadie (2003) argues, following Poterba, Venti and Wise (1994,

1995), that 401(k) eligibility can be used as a conditionally independent instrument

to estimate the effects of 401(k) participation on savings. Several recent papers have

revisited this empirical question and estimated the LATE using the same instrument

by different methods (e.g., Belloni et al., 2017; Chernozhukov et al., 2018; Heiler,

2022; Sant’Anna, Song and Xu, 2022). Since our new doubly robust estimator relies

on the same identifying assumptions, we also choose to reanalyze the effect of 401(k)

participation. We use the same dataset as Abadie (2003). The data consists of a

sample of 9,275 households from the Survey of Income and Program Participation

(SIPP) of 1991. As outcomes, we consider net financial assets (in US dollars) and

participation in an individual retirement account (IRA), which is another popular

tax-deferred saving plan in the US. The treatment is an indicator for participation

in a 401(k) plan. The set of control variables consists of family income, age, marital

status, and family size. Age enters the conditional mean functions quadratically.

Table 2 reports the estimates of the parameters of interest together with asymp-

totic standard errors for both outcome variables. The first two rows display the

coefficient estimates for 401(k) participation from OLS and IV estimation, respec-

tively. OLS estimates of the participation coefficient for both regressions are positive

and significant. However, as mentioned above, due to unobserved preferences for

saving, it is likely that these overestimate the true effect even after conditioning on

various individual characteristics. The usual IV estimates are indeed much smaller

than the OLS estimates, although they are still positive and significant. Moreover,

the Hausman test for the absence of endogeneity strongly rejects for both outcomes.

Next, we report the average treatment effect (ATE) of the participation in a 401(k)

plan, as estimated by IPWRA. The ATE is identified if there are no unmeasured
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Table 2: Estimates of the Effects of 401(k) Participation

(A) (B)
Net financial assets IRA
Estimate Std. err. Estimate Std. err.

OLS 13,527 (1,810) 0.0569 (0.0103)
IV 9,419 (2,152) 0.0274 (0.0132)

Hausman test
H0: OLS = IV p = 0.0004 p = 0.0004

ATE ATE
IPWRA 10,767 (1,772) 0.0554 (0.0096)

LATE LATE
IPW 3,994 (4,891) 0.0165 (0.0135)
RA 8,467 (1,991) 0.0338 (0.0128)

IPWRA 8,046 (2,587) 0.0361 (0.0128)
AIPW 5,416 (4,176) 0.0404 (0.0131)

ATT ATT
IPWRA 12,673 (3,329) 0.0697 (0.0110)

LATT LATT
IPWRA 10,918 (3,709) 0.0413 (0.0143)

Hausman test
H0: ATT = LATT p = 0.457 p = 0.001

Notes: The data are Abadie (2003)’s subsample of the Survey of Income and Program
Participation (SIPP) of 1991. The sample size is 9,275. The outcomes are net finan-
cial assets (Panel A) and a binary indicator for participation in IRAs (Panel B). The
treatment is an indicator for 401(k) participation. The instrument is an indicator for
401(k) eligibility. The set of covariates consists of family income, age, age squared, mar-
ital status, and family size. “OLS” and “IV” are the estimates of the coefficient on the
endogenous treatment with covariates (and instrument) listed above. The remaining es-
timators are defined in the main text. Standard errors are in parentheses. For OLS and
IV, we report robust standard errors. For the remaining estimators, our standard errors
follow from the GMM framework in Section 4.

confounders. If this is not the case, similar to the OLS coefficient, we also expect

the ATE estimates to be biased. The ATE estimate of 401(k) participation on total

net financial assets is smaller than the OLS estimate and slightly larger than the IV
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estimate. The ATE on having an IRA account is also larger than the corresponding

IV estimate but closer to the OLS estimate. Following the estimated ATEs, the

LATE estimates are also reported. Specifically, we estimate the LATE using IPW,

RA, AIPW, and our proposed IPWRA estimator. The LATE is identified if the

assumptions discussed in Section 2 are satisfied. IPW and AIPW estimates of the

LATE on net financial assets are small in magnitude and very imprecisely estimated.

On the other hand, the RA and IPWRA estimates are closer to the IV estimates

and relatively very precise. The IPW estimate of the LATE on IRA participation

is insignificant while the estimates based on RA, IPWRA, and AIPW are significant

and rather similar in magnitude. Additionally, we estimate the ATT and LATT of

participation in a 401(k) plan. Since there is one-sided noncompliance, we can test

the equality of ATT and LATT as discussed in Section 5. For net financial assets,

we cannot reject the equality of the two treatment effects, ATT and LATT. This

suggests that participation in a 401(k) plan might be unconfounded conditional on

the set of variables that we control for, following Abadie (2003). However, the ATT

and LATT for the probability of having an IRA are statistically different from each

other based on our proposed test, which underscores the importance of IV estimation

under the maintained assumptions of Section 2.

The results of this application are reassuring given that our proposed DR method

provides estimates in a reasonable range with good precision. At the same time,

the AIPW estimate of the LATE on net financial assets – that is, the other doubly

robust estimate – is very imprecise, which is in line with previous criticism of AIPW

estimation in other contexts (Kang and Schafer, 2007). The RA estimate of the LATE

has a smaller standard error but does not enjoy the double robustness property. The

differences between the LATE estimates for the binary outcome, IRA participation,

are minor, with the exception of the small and insignificant IPW estimate.
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6.2 The Effects of Medicaid

In our second empirical application, we revisit Taubman et al. (2014)’s analysis of

the data from the Oregon Health Insurance Experiment. In 2008, the state of Oregon

decided to offer about 10,000 spots in Medicaid using a lottery that randomly selected

eligible households from a larger pool of applicants. Finkelstein et al. (2012), Taub-

man et al. (2014), Denteh and Liebert (2022), and Johnson, Cao and Kang (2022),

among others, used Oregon’s lottery assignment as a binary instrument to assess the

effects of Medicaid on various outcomes related to health and healthcare utilization.

Here, following much of the previous work, we focus on emergency room (ER) visits

at the extensive and intensive margins. In other words, we use our proposed method

to analyze the effects of Medicaid on a binary outcome indicating any ER visits in

the study period as well as on a count outcome indicating the number of visits.

In what follows, we use Taubman et al. (2014)’s administrative data with over

24,000 observational units. The endogenous treatment variable is defined as “ever

enrolled in Medicaid” during the study period. Table 3 reports a number of estimates

together with their associated standard errors. OLS refers to the coefficient estimates

for the endogenous treatment variable. ATE and ATT refer to the IPWRA estimates

of these parameters. IV refers to the coefficient estimates for the endogenous treat-

ment variable, which use the binary lottery instrument. Finally, LATE and LATT

are estimated using our proposed estimators. Following Taubman et al. (2014), all

regressions include indicators for different numbers of household members on the lot-

tery list, which is necessary for instrument validity, and past outcome data, which

should improve the precision of the final estimates.

It turns out that the OLS, ATE, and ATT estimates (and their standard errors)

are almost identical for the binary outcome and quite similar for the count outcome,
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Table 3: Estimates of the Effects of Medicaid

OLS ATE ATT IV LATE LATT
Outcome: ER visits (any)

Estimate 0.1355 0.1348 0.1360 0.0697 0.0696 0.0812
Std. err. (0.0068) (0.0069) (0.0069) (0.0239) (0.0238) (0.0246)

Outcome: ER visits (#)
Estimate 0.4611 0.5320 0.5622 0.3880 0.4508 0.4701
Std. err. (0.0340) (0.0346) (0.0385) (0.1070) (0.1254) (0.1141)

Notes: The data are Taubman et al. (2014)’s sample from the Oregon Health Insurance
Experiment. The sample sizes are 24,646 (top panel) and 24,615 (bottom panel). The
outcomes are an indicator for any ER visits (top panel) and the (censored) number of ER
visits (bottom panel) in the study period. The treatment is an indicator for Medicaid
coverage. The instrument is an indicator for whether a given household was selected by
the Medicaid lottery. The set of covariates consists of indicators for different numbers of
household members on the lottery list (both panels), an indicator for any ER visits before the
randomization (top panel), and the number of ER visits before the randomization (bottom
panel). “OLS” and “IV” are the estimates of the coefficient on the endogenous treatment
with covariates (and instrument) listed above. The remaining estimators are defined in the
main text. Standard errors, clustered on the household identifier, are in parentheses. For
OLS and IV, we report cluster-robust standard errors. For the remaining estimators, our
standard errors follow from the GMM framework in Section 4.

although in the latter case the OLS estimates are smaller than those of the ATE

and ATT. In any case, the estimates show a significant positive correlation between

Medicaid and ER utilization both on the extensive and intensive margins. Due to

treatment endogeneity, however, these estimates cannot be interpreted as causal ef-

fects. The last three columns of Table 3 take this endogeneity into account and rely

on the instrumental variable for the identification of causal effects. It turns out that

these estimates are much smaller than the OLS, ATE, and ATT estimates, especially

in the case of the binary outcome, where the estimates are now roughly half as large.

Like in Taubman et al. (2014), and unlike in an earlier analysis by Finkelstein et al.

(2012) that relied on mail survey data, these estimates are also significantly different

from zero. Our analysis, however, also reveals an interesting dimension of treatment

effect heterogeneity: LATT, the effect on the treated compliers, appears to be larger
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than the usual LATE. A formal comparison of the two objects yields a p-value of

about 0.04 for the binary outcome and 0.47 for the count outcome. The fact that the

LATT may be larger than the LATE is likely due to treatment effect heterogeneity

across households of different sizes: effects of Medicaid on ER utilization are more

pronounced in larger households (cf. Denteh and Liebert, 2022), which are also more

likely to be treated given the lottery design.

7 Simulations

In this section, we conduct a Monte Carlo study to assess the bias and precision of

our DR LATE estimator in comparison with other existing estimators. In particular,

we focus on the effect of certain types of misspecification on the bias and precision.

To eliminate to some extent the arbitrariness in choosing the data-generating process,

we generate our Monte Carlo samples to mimic some statistical features of the 401(k)

dataset we used in Section 6.1. We draw 1,000 samples with N = 1,000 and the

same number of samples with N = 4,000 observations. Each sample is constructed

in the following steps. First, we draw two random variables from a bivariate normal

distribution. The parameters of the bivariate normal distribution are set equal to

the empirical means and covariances of age and log income in the 401(k) data. The

simulated log income is then exponentiated to generate the income variable. As an

additional covariate, we take the square of the simulated age variable. Thus, our full

set of covariates, X, includes three variables: income, age, and age squared. The

instrumental variable Z is generated according to

Z = 1l (Λ (γ0 +Xγx) > Uz) , (35)

37



where γ = (γ0, γx) corresponds to the estimated coefficient vector from a logit re-

gression of 401(k) eligibility on a constant, income, age, and age squared using the

original data (see column (1) of Table A1 in the Appendix). The random variable Uz

is drawn from the standard uniform distribution and Λ(·) is the logistic cdf. Then,

we construct D(1) as follows:

D(1) = 1l (Λ (ω0 +Xδ0) > U1) , (36)

where the coefficients are from a logit regression using observations with Zi = 1

(column (2) of Table A1 in the Appendix) in the original data and U1 is drawn from

the standard uniform distribution. Finally, we generate two outcome variables. One

mimics the continuous outcome variable, net financial assets, and the other mimics

the binary outcome variable, participation in IRA. The continuous outcome Y (z) is

generated using the following linear model:

Y (z) = αz +Xβz + εz for z = 0, 1. (37)

We use the coefficients from two separate regressions of the outcome variable on the

set of covariates for Zi = 1 and Zi = 0 subsamples in the original data (columns (3)

and (4) of Table A1 in the Appendix). The error terms εz are drawn from a normal

distribution with mean zero and variance σ2
z , where σ2

z is the mean squared residual

from the regression for Zi = z. The binary outcome variable is constructed similarly

to the potential treatment variable using logit link:

Y (z) = 1l (Λ (αz +Xβ0) > Uy) for z = 0, 1, (38)
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with coefficients from two separate logistic regressions of the binary indicator of IRA

participation on the set of covariates (columns (5) and (6) of Table A1 in the Ap-

pendix) and Uy drawn from the standard uniform distribution. For the simulated

data, the “true” values of the LATE are $8,816.5 for net financial assets and 0.036

for the probability of IRA participation.

For each simulated sample, in addition to our proposed method, we estimate the

LATE using IV, RA, IPW, and AIPW. The RA estimator of the LATE is constructed

similarly to our proposed estimator with the crucial difference that the objective

functions are not weighted. The IPW and AIPW estimators of the LATE are the

ratios of two IPW and AIPW estimators of ATEs of Z on Y and W , respectively.

In general, the LATE estimators based on the identification result in (5) require

estimation of four conditional means. However, as mentioned earlier, since in the orig-

inal 401(k) data and in our simulation design Z = 0 implies D = 0, the second term

in the denominator of (5) is zero and we do not need to estimate (9). Thus, for the

RA approach, we estimate the two conditional means in the numerator of (5) by two

separate linear (logistic) regressions of continuous (binary) Y (z) using observations

from subsamples with Zi = 1 and Zi = 0, respectively. Similarly, the first conditional

mean in the denominator is estimated by a logistic regression for the subsample with

Zi = 1. On the other hand, the IPW approach requires estimating a binary response

model for the instrument propensity score defined in (13). Thus, we estimate the

instrument propensity score by a logistic regression. Our proposed IPWRA method

requires the same conditional mean specifications as the RA approach and addition-

ally the specification of (13) to construct the weights. For IPWRA, we estimate the

conditional means in the numerator of (5) by two separate weighted linear (logistic)

regressions of continuous (binary) Y (z) with the weight equal to the inverse of the

estimated probability of being eligible or not, using the subsample with Zi = 1 or
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Zi = 0, respectively. Finally, AIPW requires the same set of model specifications as

our proposed method, although the regressions are not weighted.

In our Monte Carlo study, we consider estimators (i) when the required models

are all correctly specified, (ii) when models for (7)–(10) are misspecified, and (iii)

when the model for (13) is misspecified. Correct specifications for these estimators

mean that we use the correct set of covariates for all the regressions, namely simulated

income, age, and age squared. Misspecification of a certain model means that the set

of regressors does not include age squared.

Tables 4 and 5 present the biases, root mean squared errors of the LATE esti-

mators, and the empirical coverage rates for nominal 95% confidence intervals under

the different model specifications for the dependent variables net financial assets and

IRA participation, respectively.

Table 4 suggests that, when the relevant models are correctly specified, that is,

all the confounding factors are controlled for, the bias is highest for the linear IV

estimates. This coincides with the fact that the IV estimand is not equal to the

LATE in the case of a conditionally independent instrument (e.g., S loczyński, 2021;

Blandhol et al., 2022). The RA estimator has the smallest bias and RMSE when all

the models are correctly specified. For the smaller sample size, our proposed estimator

has the second smallest bias and RMSE. For the larger sample size, the bias estimates

are very close for IPWRA and AIPW but the precision of our estimator is better than

that of IPW and AIPW.

The second block of Table 4 presents the results for the first type of misspeci-

fication. The IV estimator becomes heavily biased when we do not control for age

squared. The effect of omitting this variable when estimating the conditional mean

functions in (7)–(10) is similar for the RA estimator, which is also very biased. The

IPW estimator is not affected by this type of misspecification since it only requires

40



Table 4: Simulation Results for the Continuous Outcome Variable

All Correct (7)–(10) misspecified (13) misspecified
Bias RMSE Cov. Bias RMSE Cov. Bias RMSE Cov.

N=1,000
IV 271.43 6,163.19 95.3 –1,544.41 6,395.32 94.5 271.43 6,163.19 95.3
RA 127.69 6,169.94 95.5 –1,724.20 6,445.16 94.2 127.69 6,169.94 95.5

IPW 162.49 6,958.60 95.8 162.49 6,958.60 95.8 –1,549.48 7,033.47 94.1
IPWRA 159.24 6,300.47 95.4 103.68 6,306.11 95.3 140.70 6,258.49 95.3
AIPW 195.36 6,418.33 95.6 170.13 6,439.62 95.4 170.75 6,304.15 95.4

N=4,000
IV 114.57 3,097.13 94.8 –1,734.22 3,565.59 89.7 114.57 3,097.13 94.8
RA –45.16 3,119.43 94.4 –1,907.94 3,662.62 89.2 –45.16 3,119.43 94.4

IPW –60.69 3,381.29 94.4 –60.69 3,381.29 94.4 –1738.43 3,782.54 91.2
IPWRA –74.71 3,155.63 94.8 –102.96 3,161.44 94.8 –69.52 3,152.04 94.6
AIPW –74.41 3,174.61 94.8 –95.49 3,183.18 94.8 –67.71 3,160.11 94.7

Notes: The details of the simulation design are provided in Section 7. Results are based on 1,000 replications. “RMSE”
is the root mean squared error of an estimator. “Cov.” is the coverage rate for a nominal 95% confidence interval. “IV” is
the IV estimate of the coefficient on the endogenous treatment, controlling for X. The remaining estimators are defined
in the main text. To calculate the coverage rate, we use robust standard errors (IV) or standard errors that follow from
the GMM framework in Section 4 (remaining estimators).

the correct specification of the model for the instrument propensity score. The doubly

robust estimators, IPWRA and AIPW, are not seriously affected by this type of mis-

specification either, as predicted by theory. Our proposed method has the smallest

bias and RMSE for sample size N = 1,000, and a slightly larger bias – but still the

smallest RMSE – for sample size N = 4,000.

Finally, we investigate the bias and RMSE for the case where the instrument

propensity score in (13) is estimated without the squared term. As expected, the

only estimator that is severely affected by this misspecification is IPW. The doubly

robust methods continue to have reasonably small biases. IPWRA has the smaller

bias and RMSE for N = 1,000 and the smaller RMSE for N = 4,000, as in other

cases. The results demonstrate that the double robustness of our proposed method is

achieved without significant sacrifices in terms of precision. Coverage rates are close
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Table 5: Simulation Results for the Binary Outcome Variable

All Correct (7)–(10) misspecified (13) misspecified
Bias RMSE Cov. Bias RMSE Cov. Bias RMSE Cov.

N=1,000
IV –0.0005 0.0421 93.5 –0.0048 0.0423 93.6 –0.0005 0.0421 93.5
RA –0.0031 0.0408 94.0 –0.0030 0.0407 93.3 –0.0031 0.0408 94.0

IPW –0.0031 0.0441 94.0 –0.0072 0.0438 93.4 –0.0072 0.0438 93.4
IPWRA –0.0033 0.0410 93.5 –0.0034 0.0411 93.9 –0.0033 0.0409 93.7
AIPW –0.0033 0.0411 93.6 –0.0033 0.0411 93.8 –0.0032 0.0409 93.8

N=4,000
IV 0.0028 0.0199 95.0 –0.0017 0.0198 95.6 0.0028 0.0199 95.0
RA –0.0001 0.0191 95.1 0.0000 0.0192 95.5 –0.0001 0.0191 95.1

IPW –0.0001 0.0199 95.6 –0.0042 0.0203 95.1 –0.0042 0.0203 95.1
IPWRA –0.0002 0.0192 95.7 –0.0002 0.0192 95.6 –0.0002 0.0192 95.2
AIPW –0.0002 0.0192 95.6 –0.0002 0.0191 95.6 –0.0002 0.0192 95.3

Notes: The details of the simulation design are provided in Section 7. Results are based on 1,000 replications.
“RMSE” is the root mean squared error of an estimator. “Cov.” is the coverage rate for a nominal 95% confidence
interval. “IV” is the IV estimate of the coefficient on the endogenous treatment, controlling for X. The remaining
estimators are defined in the main text. To calculate the coverage rate, we use robust standard errors (IV) or standard
errors that follow from the GMM framework in Section 4 (remaining estimators).

to the nominal coverage rate for both DR estimators in all cases. For IV, RA, and

IPW, coverage rates are sometimes substantially lower than 95% when the estimators

are otherwise biased.

Table 5 revisits the same measures of estimator performance as Table 4 while

focusing on the binary outcome. Unlike in Table 4, the differences between the

estimators that we consider are very minor, even in cases when one of the underlying

models is misspecified. This is likely due to the fact that, as shown in Table A1 in the

Appendix, age squared is insignificant in the logit regressions of the binary outcome,

IRA participation. It follows that omitting this variable should have a smaller effect

on estimator performance, relative to Table 4.

In any case, even though the differences in estimator performance, as reported in

Table 5, are very minor, it is also clear that the performance of RA, IPWRA, and
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AIPW is better overall than that of IV and IPW. This is again reassuring, given our

general preference for IPWRA estimation.

8 Conclusion

In this paper we develop a framework for doubly robust (DR) estimation of local

average treatment effects, which uses quasi-likelihood methods weighted by the inverse

of the instrument propensity score. These estimators are commonly referred to as

inverse probability weighted regression adjustment (IPWRA). We argue that our

estimators have appealing small sample properties relative to competing methods,

such as augmented inverse probability weighting (AIPW). We discuss inference for

IPWRA estimators and propose a DR version of a Hausman test previously suggested

by DHL (2014), which compares two estimates of the average treatment effect on the

treated (ATT) in settings with one-sided noncompliance.

We discuss two empirical applications. First, we revisit Abadie (2003)’s study of

the effects of 401(k) retirement plans, and demonstrate that some of the conclusions

are different dependent on whether one uses AIPW or IPWRA, which are the two

major classes of DR estimators. While we obviously do not know which estimate is

closer to the true effect of interest, we note that our preferred estimate is much more

precise. Second, we reanalyze Taubman et al. (2014)’s sample from the Oregon Health

Insurance Experiment. Focusing on the effect of Medicaid on emergency room visits,

we provide evidence that the local average treatment effect on the treated (LATT)

is larger than the usual local average treatment effect (LATE), at least along the

extensive margin. We conclude the paper with a Monte Carlo study that demonstrates

the very good finite sample properties of our proposed IPWRA estimator.
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Appendix

Table A1: Coefficient Values for the Data-Generating Process in Section 7

401(k) 401(k) Net total IRA
eligibility participation financial assets participation

(1) (2) (3) (4) (5) (6)
Household income 0.0000232 0.0000154 1.134 0.762 0.0000318 0.0000342

(23.00) (9.18) (25.67) (23.92) (18.87) (20.87)
Age (minus 25) 0.0581 –0.0285 –106.6 –557.4 0.0420 0.0665

(7.25) (–2.03) (–0.25) (–2.42) (2.63) (4.99)
Age (minus 25) squared –0.00158 0.000699 41.36 38.28 0.000211 –0.000267

(–7.45) (1.88) (3.68) (6.32) (0.52) (–0.82)
Constant –1.727 0.387 –36377.2 –19452.5 –3.148 –3.653

(–24.55) (3.08) (–9.68) (–10.03) (–20.02) (–28.04)

Observations 9,275 3,637 3,637 5,638 3,637 5,638
Sample Full Z = 1 Z = 1 Z = 0 Z = 1 Z = 0
Method Logit Logit OLS OLS Logit Logit

Notes: The table presents coefficient estimates obtained using Abadie (2003)’s subsample of the Survey of Income and Program
Participation (SIPP) of 1991, as previously analyzed in Table 2. The instrument, Z, is an indicator for 401(k) eligibility. The
estimates in column (1) are used as coefficient values for equation (35). The estimates in column (2) are used as coefficient
values for equation (36). The estimates in columns (3) and (4) are used as coefficient values for equation (37). The estimates
in columns (5) and (6) are used as coefficient values for equation (38). t statistics are in parentheses.
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