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Summary

Weconsider two recent suggestions for how to performan empiricallymotivated
MonteCarlo study to help select a treatment effect estimator under unconfound-
edness. We show theoretically that neither is likely to be informative except
under restrictive conditions that are unlikely to be satisfied in many contexts.
To test empirical relevance, we also apply the approaches to a real-world setting
where estimator performance is known. Both approaches are worse than ran-
dom at selecting estimators that minimize absolute bias. They are better when
selecting estimators that minimize mean squared error. However, using a sim-
ple bootstrap is at least as good and often better. For now, researchers would be
best advised to use a range of estimators and compare estimates for robustness.

1 INTRODUCTION

A large literature focuses on estimating average treatment effects under unconfoundedness (see, e.g., Blundell & Costa
Dias, 2009; Imbens & Wooldridge, 2009; Abadie & Cattaneo, 2018).1 Many estimators are available to researchers in this
context, andmany of these estimators have similar asymptotic properties. This canmake it difficult to selectwhich estima-
tor to use. Monte Carlo studies are a useful tool for examining the small-sample properties of these estimation methods,
which can guide estimator choice.2 Early contributions, such as Frölich (2004), demonstrate estimator performance in
stylized data-generating processes (DGPs) that do not resemble any empirical settings. This reliance on unrealistic DGPs
is criticized by Huber et al. (2013) and Busso et al. (2014). Both recommend that Monte Carlo studies should intend to
replicate actual data sets of interest, although they suggest different procedures for doing this. Huber et al. (2013) describe

1The unconfoundedness assumption may also be referred to as exogeneity, ignorability, or selection on observables.
2See, for example, Frölich (2004), Lunceford and Davidian (2004), Zhao (2004, 2008), Busso et al. (2009), Millimet and Tchernis (2009), Austin, (2010)
Abadie and Imbens (2011), Khwaja et al. (2011), Diamond and Sekhon (2013), Huber et al. (2013), Lechner and Wunsch (2013), Busso et al. (2014),
Frölich et al. (2017), and Bodory et al. (2018), all studying the finite-sample performance of estimators of average treatment effects under unconfoundedness.
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this approach to examining the small-sample properties of estimators as an “empirical Monte Carlo study” (EMCS). An
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ducting a small-scale simulation study tailored to the features of the data at hand.” Similarly, Huber et al. (2013) suggest
that “the advantage [of an EMCS] is that it is valid in at least one relevant environment”; that is, that it is informative at
least about the performance of estimators in the data set on which it was conducted.
In this paper we evaluate the premise that EMCS can be informative about the performance of estimators in the

particular data that are the basis for the EMCS.We first show theoretically that these approaches are expected to be infor-
mative only under very restrictive conditions. These conditions are unlikely to hold in many practical examples faced
by a researcher. We then test EMCS performance in a real-world case where we know the actual behavior of estimators.
We find that in terms of selecting estimators on absolute bias they are often worse than choosing randomly. On mean
squared error (MSE) they performbetter than random, but no better than selecting an estimator based on simple bootstrap
estimates of MSEs. Their performance in absolute terms may also still be poor.
The first type of EMCS we consider is the placebo EMCS (Huber et al., 2013).3 This proposes a way to assign “realistic

placebo treatments among the non-treated,” using information about the predictors of treatment status in the original
data. It then tests howwell estimators can recover the zero effect of the placebo treatment. The performance of estimators
in this exercise is hypothesized to be informative about their performance in the original data.
The second type we describe as the structured EMCS. An exercise of this type is undertaken by Busso et al. (2014).4 Here

a parametrized approximation of the original DGP is created, using functional form assumptions about the distributions
of observed covariates. Parameters of their marginal (or conditional) distributions are estimated from the original data.
Samples can be drawn from this approximate DGP, to which the estimators can then be applied. Since the treatment
effect in this DGP can be calculated directly from knowledge of the parameters, performance of the estimators in these
samples can be measured. The performance of estimators in this exercise is also hypothesized to be informative about
their performance in the original data.
To examine whether or not EMCS can correctly choose a best-performing estimator, for various definitions of perfor-

mance, we first focus on a simple example with two estimators that have Gaussian sampling distributions. We show
analytically that both these approaches will only be guaranteed to correctly select the preferred estimator if they can
correctly reproduce both the biases and the ordering of the variances of estimators. These are restrictive conditions that
we show can easily fail in practical applications, such as when the EMCS procedures fail to recover heteroskedastic
errors or misspecify the regression equations or propensity scores. In two sets of simulations based on a stylized DGP, both
approachesselect the betterestimator less than3%of the time—muchworse than the50%achievableby selecting randomly.
To study the extent of the problem in a real-world circumstance, we apply both methods to the National Supported

Work (NSW) Demonstration data on men, previously analyzed by LaLonde (1986), Heckman and Hotz (1989), Dehejia
and Wahba (1999, 2002), Smith and Todd (2001, 2005), and many others. In these data participation in a job training
program was randomly assigned, so the treatment effect of the program can be estimated by comparing sample means.
LaLonde (1986) used these data to test the performance of estimators at reproducing this treatment effect when an artifi-
cial comparison group (rather than the experimental controls) was used. We instead use the data to test how well the two
EMCS procedures can inform us about the performance of the estimators: Can EMCS tell us which estimator to use? On
average, how much worse than the optimal estimator is the one chosen by EMCS? How well can EMCS reproduce the
ranking of performance across all estimators?
Applying the two EMCS procedures we find three main results. First, in terms of absolute bias, the EMCS procedures

are no better, and often noticeably worse, than selecting an estimator at random. In two out of three cases we study, the
rankings produced are negatively correlated with the true ranking. In one case the preferred estimator selected by EMCS
is, on average, 30–37 times worse than the actual best estimator.
Second, EMCS does better at reproducing the performance of estimators in terms of MSE. This is because the MSEs of

the estimators aremostly drivenby their variances, andEMCSappearsmore effectiveat capturing variances. The rankings
of estimators are consistently positively correlated with the true rankings, although the estimator preferred by EMCS has
an MSE up to twice as high as the best estimator.
Third, given the variance result, we also compare EMCS procedures to choosing estimators based on performance

criteria estimated from a simple nonparametric bootstrap. We find that the bootstrap is as good, and often much better,

3It is also applied by Lechner and Wunsch (2013), Huber et al. (2016), Frölich et al. (2017), Lechner and Strittmatter (2019), and Bodory et al. (2018). A
related approach is proposed by Schuler et al. (2017).
4A similar approach is also used by Abadie and Imbens (2011), Lee (2013), and Díaz et al. (2015).
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important question is whether either type of EMCS can help applied researchers in choosing what estimator(s) to prefer
in a given context. Busso et al. (2014) indicate this might be possible, noting that their results “suggest the wisdom of con-
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than either of the EMCS procedures. Hence even when the procedures are somewhat informative, they are not superior
to a procedure that relies on fewer design choices.
These results are unfortunate, but nevertheless important. They caution against treating either of these approaches as

general solutions to the problem of estimator choice. There remains no silver bullet that can assist empirical researchers
with the “right” or “best” estimator for a particular context. In the absence of a clear choice driven by research design, the
best advice at this stage is likely to be implementing a number of estimators, and then considering the range of estimates
provided, as Busso et al. (2014) also suggest.
Our results also have implications for researchers studying the small-sample properties of treatment effect estimators.

It has been argued that “it is preferable to study DGPs that are empirically relevant” (Busso et al., 2014). Our theoretical
and empirical results suggest there is little support for this claim. We show theoretically that misspecification in the con-
struction of the DGP can lead the ranking of estimators to be incorrect for the original data set. In our empirical example,
we see that EMCS is not better than using a bootstrap (and sometimes not better than random) to predict performance in
the data on which the EMCS was performed. There seems to be little reason, then, to think it is particularly informative
about performance in other unrelated real data sets—that is, that testing small-sample properties of estimators in “real
data” is necessarily better than in completely artificial data. A more fruitful path might be to test sensitivity of estimator
performance to parameters of the simulation, such as sample size and the degree of heteroskedasticity. This approach is
also taken by Huber et al. (2013), andmight be more helpful in understanding what characteristics of samplesmost affect
the performance of particular estimators.

2 EMCS DESIGNS

We first describe the two main approaches to conducting an EMCS, namely the placebo design of Huber et al. (2013) and
the structured design of Busso et al. (2014). In either EMCS design, one simulates many “empirical Monte Carlo” repli-
cation samples from a known DGP. By implementing the estimators on the simulated replications, one obtains estimates
of the sampling distributions and performance criteria (e.g., MSEs) of the estimators, according to which one ranks the
candidate estimators. Note that the researcher needs to make a choice of what criteria to use to rank estimators.

2.1 The placebo design
The idea of the placebo design is to assign placebo treatments to some control observations, so that by construction the
treatment effect is zero, and then to attempt to recover this effect.5 In particular, covariates and outcomes (Xi,Yi) are first
drawn jointly by sampling (with replacement) from the empirical distribution of control observations. Using the original
data set, the propensity score is estimated (e.g., using a logit model). The estimated parameters of this model �̂� are then
used to assign placebo treatments to the generated sample in the following way:

Di = 1[Si > 0], (1)

Si = 𝜋 + 𝜆Xi�̂� + 𝜖i, (2)

where 𝜖i is an i.i.d. error, and both 𝜋 and 𝜆 are additional parameters to be selected. While 𝜋 shifts the proportion of
observations that are treated, 𝜆 controls the extent of selection: with 𝜆 = 1 selection on observables takes the same form
in the Monte Carlo samples as in the original data set.

2.2 The structured design
The idea of the structured design is instead to create a parametrized approximation to the original (unknown) DGP,
and then draw samples from the approximated process. To begin, a fixed number of treated and control observations
are created, to match the number of each in the original data set. Covariates and outcome variables are then drawn
from parametrized distributions where the parameters are estimated from the original data set. For example, the variable
blackmight come from a Bernoulli with mean estimated from the data, and the variable earnings from a log-normal
distributionwithmean and variance estimated from the data. The parameters of these distributions are typically estimated

5A similar approach was developed by Bertrand et al. (2004), who studied inference in difference-in-differences methods using simulations with ran-
domly generated “placebo laws” in state-level data—that is, policy changes that never actually happened. For follow-up studies, see Hansen (2007),
Cameron et al. (2008), and Brewer et al. (2018).
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conditional on treatment status. Parameters of somedistributionsmight also be conditional on the value of other variables;
for example, earningsmight be conditional on race as well as treatment status. More conditioningwill improve thematch
of the joint distribution of simulated data to the joint distribution of the original data, but will increase the number of
parameters that need to be estimated.

3 THEORY

To understand the conditions under which an EMCSmight be informative about the preferred estimator in some particu-
lar data set, we first construct a simple example. Here we have only two estimators, with a straightforward and restricted
joint sampling distribution (bivariate Gaussian). This bivariate Gaussian setting mimics an ideal situation in which the
finite-sample distribution of the estimators is well approximated by their asymptotic distribution. We show that even in
such an ideal, large-sample situation, EMCS can fail to select the best estimator if the bias in any one of the estimators or
the ranking of variances is not correctly replicated in the simulated samples. We provide simple common cases for treat-
ment effect estimation in which failure to capture the biases and heteroskedasticity contaminates EMCS, and provide
results from a simple simulation illustrating this. We then extend the example to the case of more than two estimators.

3.1 Simple example: Two-estimator case
Suppose the researcher wants to rank two estimators �̂�1 and �̂�2 according to their statistical performance under repeated
sampling. These estimators are estimating the same object of interest 𝜃 ∈ R, but their constructions are different. For
simplicity of the illustration, assume that the joint sampling distribution of the two estimators is bivariate Gaussian:(

�̂�1

�̂�2

)
∼ 

[(
𝜃1
𝜃2

)
,Σn

]
, (3)

where 𝛴n = n−1𝛴, Σ =
(
𝜎21 𝜎12

𝜎12 𝜎22

)
, and n is the sample size. Here, our implicit assumption is that the estimators (�̂�1, �̂�2)

converge to (𝜃1, 𝜃2) at
√
n -rate. Let 𝜃0 be the true value of the parameter of interest. We allow �̂�1 and/or �̂�2 to be biased

so that 𝜃1 and/or 𝜃2 can differ from 𝜃0.
We rank these estimators according to their statistical performance. Given that we often assess the performance of an

estimator by its mean squared error (MSE) or mean absolute error (MAE), we may, for instance, rank the estimators
according to their MSEs or MAEs.6 Given the Gaussian assumption, the MSE of each estimator, j = 1, 2, is

MSE(�̂�𝑗 ) = (𝜃𝑗 − 𝜃0)2 + n−1𝜎2𝑗 .

Wedenote by j0 ∈ {1, 2} the index of the strictly preferred estimator, assuming it exists. Ranking the estimators is difficult
in practice since we do not know the mean and variances of the estimators as well as the true value of 𝜃. Proposals of the
EMCS literature aim to infer a best-performing estimator j0 by estimating the sampling distribution of �̂�1 and �̂�2 via some
Monte Carlo studies. For simplicity, we assume that the estimators simulated in EMCS also follow bivariate Gaussian:(

�̂�∗1
�̂�∗2

)
∼ 

[(
𝜃1

𝜃2

)
, Σ̃n

]
, (4)

where Σ̃n = a−1n Σ̃, Σ̃ =
(
�̃�21 �̃�12

�̃�12 �̃�22

)
, and an is the size of a simulated sample that may differ from the size of the original

sample n. The underlying parameters in EMCS, (𝜃1, 𝜃2, Σ̃), generally depend on the original sample, but we assume for
simplicity that the dependence is negligible and they can be treated as constants. EMCS computes �̂�∗1 and �̂�∗2 repeatedly

6MSE and MAE criteria do not take into account the dependence of the estimators. One way to rank the estimators that takes into account their
dependence is based on the probability of being closer to the truth, Pr(|ê1| ≤ |ê2|), where ê1 = �̂�1 − 𝜃0 and ê2 = 𝜃2 − 𝜃0 are the estimation errors of the
two estimators. That is, �̂�1 is preferred to �̂�2 if Pr (|ê1| ≤ |ê2|) > 1∕2 and �̂�2 is preferred to �̂�1 if Pr (|ê1| ≤ |ê2|) < 1∕2. Considering this criterion instead
of MSE does not affect the main results in our simple example.

896



ADVANI ET AL.

using simulated samples of size an drawn from a DGP with the parameter value set at known value 𝜃0. For instance, the
placebo EMCS approach of Huber et al. (2013) sets 𝜃0 = 0 and an ≤ n0, the size of the control group in the original data.
The approach of structured EMCS sets 𝜃0 at an estimate of 𝜃0 constructed from the original sample. In implementing
EMCS, we do not have to know the mean and variance parameters of (�̂�∗1 , �̂�

∗
2 ), and they can be estimated with arbitrary

accuracy based on the simulated estimators. EMCS accordingly obtains the MSE of each estimator, j = 1, 2, by

M̂SE(�̂�𝑗 ) = (𝜃𝑗 − 𝜃0)2 + a−1n �̃�2𝑗 .

We denote by 𝑗0 the index for a best-performing estimator estimated from EMCS, 𝑗0 ≡ argmin𝑗M̂SE(�̂�𝑗). To assess the
validity of EMCS, we define a criterion of EMCS-validity by the probability that 𝑗0 coincides with j0, Pr(𝑗0 = 𝑗0), where
the probability is evaluated under repeated sampling of the original samples. In the examples to follow, we investigate
how this criterion of EMCS-validity becomes one or zero depending on the parameter values in the bivariate Gaussian
distributions of Equations (3) and (4). We assume away the dependence of the parameters in Equation (4) on the original
sample for simplicity of illustration. In such a case the MSE estimates in EMCS and resulting selection of a best estimator
𝑗0 are nonrandomwhen the number of Monte Carlo iterations is large enough. The criterion of EMCS-validity in this case
is either 1 or 0.
We can also consider the average regret type criterion such as E[MSE(�̂�𝑗0 ) −MSE(�̂�𝑗0)] ≥ 0 to quantify EMCS-validity.

Here, the expectation concerns the sampling distribution of EMCS's selection of an optimal estimator 𝑗0. This average
regret criterion can quantify the severity of a wrong choice of the estimators in terms of how much MSE is, on average,
sacrificed relative to the true best-performing estimator.

3.1.1 Scenario 1
Denote the biases in (�̂�1, �̂�2)′ by b = (b1, b2)′ = (𝜃1 − 𝜃0, 𝜃2 − 𝜃0)′ and the biases in (�̂�∗1 , �̂�

∗
2 )

′ by b̃ = (b̃1, b̃2)′ =
(𝜃1 − 𝜃0, 𝜃2 − 𝜃0)′. We start with a scenario in which (�̂�1, �̂�2) are unbiased and the distribution of (�̂�∗1 , �̂�

∗
2 ) well replicates

the distribution of (�̂�1, �̂�2) in the following sense:

b = b̃ = 0, Σ = Σ̃. (5)

Here, the biases and the sample-size-adjusted variances of the estimators simulated in EMCS coincide with those of the
estimators in the original DGP. Note that the true parameter value assumed in EMCS, 𝜃0, does not have to agree with the
true parameter value in the original sampling process, 𝜃0.
In the current scenario, the ranking of the true MSEs clearly coincides with the ranking of the MSE estimates in EMCS,

implying Pr(𝑗0 = 𝑗0) = 1. This is a benchmark case in which EMCS works. The next two scenarios show that once we
depart from the assumptions in Equation (5), EMCS can be no longer valid.

3.1.2 Scenario 2
Assume that the estimators are free frombiases both in the originalDGP andEMCS,b = b̃ = 0, but EMCS fails to replicate
the normalized covariance matrix of the estimators, Σ ≠ Σ̃. In this case, the MSE estimates in EMCS correctly rank the
true MSEs of the estimators (assuming 𝜎21 ≠ 𝜎22) if and only if the ordering of the variances of the two estimators agrees
between the original sampling process and the simulated sampling process; that is, (𝜎21 − 𝜎22)(�̃�

2
1 − �̃�22) > 0. Otherwise,

EMCS reverses the ranking of the estimators and incorrectly selects a suboptimal estimator as optimal, Pr(𝑗0 = 𝑗0) = 0.
Hence, even when EMCS well replicates the biases of the estimators, it can fail to select a best-performing estimator

due to an incorrect variance ordering.

3.1.3 Scenario 3
In the third scenario, we assume that EMCS correctly replicates the variance ordering of the estimators; that is, (𝜎21 −
𝜎22)(�̃�

2
1 − �̃�22) > 0, but fails to replicate the biases, (b1, b2) ≠ (b̃1, b̃2). To be specific, we set (b̃1, b̃2) = (0, 0), but (b1, b2) =

(0, b2), b2 ≠ 0. This can correspond to a situation that the estimator 1 is correctly specified and has no bias, whereas
estimator 2 is misspecified and is subject to bias in the original DGP. EMCS, however, fails to capture the misspecification
bias in estimator 2.
Suppose 𝜎21 > 𝜎22 holds. The true MSEs are MSE(�̂�1) = n−1𝜎21 and MSE(�̂�2) = b22 + n−1𝜎22, while the MSE estimates in

EMCS are M̂SE(�̂�1) = a−1n �̃�21 and M̂SE(�̂�2) = a−1n �̃�22 . Since we assumed that EMCS correctly replicates the variance of the
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estimators, EMCS selects j = 2 as a best estimator. This selection of the estimator is indeed misleading if b2 is far from

zero, since if |b2| > √
𝜎21−𝜎

2
2

n
, �̂�1 outperforms �̂�2 in terms of MSE.

This scenario highlights that EMCS-based selection of the estimator can fail if any one of the estimators is misspecified
and the simulation design in EMCS does not replicate the misspecification bias.

3.2 Are Scenarios 2 and 3 relevant in treatment effect estimation?
We next provide simple but empirically relevant examples where we focus on the estimation of treatment effects, and
show that both types of EMCSmay yield misleading choices of estimators for the reasons illustrated in Scenarios 2 and 3
above.
Data are given by a random sample of {(Yi,Di,Xi) ∶ i = 1, … , n}, where Yi ∈ R is unit i's observed post-treatment

outcome, Di ∈ {0, 1} is her treatment status, and Xi ∈ Rdx is a vector of her pretreatment characteristics whose support
is assumed to be bounded. We denote unit i's potential outcomes by [Yi(1),Yi(0)]. We assume the unconfoundedness
assumption, [Y(1),Y(0)] ⟂ D|X, throughout. The propensity score is denoted by e(x) = Pr(D = 1|X = x).

3.2.1 An example for Scenario 2
To keep our example as simple as possible, consider the following DGPs:

E[Y (1)|X = x] = 𝛽0 + 𝛽1 + x′𝛽2, (6)
E[Y (0)|X = x] = 𝛽0 + x′𝛽2,

var[Y (1)|X = x] = c𝜎2𝜖 , var[Y (0)|X = x] = 𝜎2𝜖 , c > 0,
e(x) = 𝛾0 + x′𝛾1.

The specifiedmean equations for both potential outcomes imply that the conditional average treatment effects are homo-
geneous over observed characteristics and equal to 𝛽1. The potential outcomes are heteroskedastic if c ≠ 1. We assume a
linear probability for the propensity score in order to simplify analytical comparisons of the variances of the estimators
we introduce below.
Suppose that the parameter of interest is the population average treatment effect for the treated (ATT), 𝜃0 = E[Y (1) −

Y (0)|D = 1]. Since specification in Equation (6) implies homogeneous conditional average treatment effects, E[Y (1) −
Y (0)|X = x] = 𝛽1, the true value of ATT is 𝜃0 = 𝛽1.
We consider two different estimators to estimate the population ATT. The first estimator �̂�1 is a semiparametric estima-

tor for ATT, which is consistent without assuming functional forms for the outcome and propensity score equations, and
asymptotically attains the semiparametric efficiency bound (SEB) of ATT derived by Hahn (1998). Estimators that attain
this property include the inverse probability weighting (IPW) estimator with nonparametrically estimated propensity
scores (Hirano et al., 2003), doubly robust estimators of Hahn (1998), covariate or propensity score matching estima-
tors with a single covariate (Abadie & Imbens, 2006; 2016), and covariate balancing estimators of Chen et al. (2008) and
Graham et al. (2012, 2016). We can set any one of these estimators as our first estimator without affecting the analysis
below.
We specify the second estimator �̂�2 as the ordinary least squares (OLS) estimator of 𝛽1 in the following regression

equation:
Yi = 𝛽0 + 𝛽1Di + X ′

i 𝛽2 + 𝜖i, E(𝜖i|Di,Xi) = 0. (7)

In other words, �̂�2 = 𝛽1,OLS. The specification of Equation (6) implies that �̂�2 is unbiased and consistent for the population
ATT, 𝜃0. We consider a situation inwhich the finite-sample distribution of (�̂�1, �̂�2) is well approximated by its large-sample
normal approximation: (

�̂�1

�̂�2

)
∼ 

[(
𝜃0

𝜃0

)
,
1
n

(
𝜎21 𝜎12

𝜎12 𝜎22

)]
,

where 𝜎21 is the asymptotic variance of
√
n(�̂�1 − 𝜃0) given by SEB for ATT without the knowledge of propensity scores,

and 𝜎22 is the asymptotic variance of
√
n(�̂�2 − 𝜃0). Under the current specification, they are obtained as

𝜎21 =
𝜎2𝜖

Pr(D = 1)

[
c + E

(
e(X)

1 − e(X)
||||D = 1

)]
, (8)
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𝜎22 =
𝜎2𝜖

Pr(D = 1)

[
c · E{[1 − e(X)]2|D = 1}

{E[1 − e(X)|D = 1]}2
+ E{e(X)[1 − e(X)]|D = 1}

{E[1 − e(X)|D = 1]}2

]
. (9)

See Appendix A for their derivations.
When Y(1) and Y(0) share the variance (c = 1), it can be shown that the OLS estimator is more efficient than the

semiparametric estimator, 𝜎22 < 𝜎21 , due to exploitation of the correct functional form of the regression equation. In
contrast, if the variance of the treated outcome is higher than the variance of the control outcome (c > 1), the simple OLS
estimator that does not take into account the heteroskedastic errors can become less efficient than the semiparametric
estimator. Specifically, we show in Appendix A that

𝜎22 > 𝜎21 iff c >
Δ1

Δ2
+ 1, (10)

where Δ1 = E

[
1

1 − e(X)
||||D = 1

]
− 1

E[1 − e(X)|D = 1]
≥ 0,

Δ2 =
E{[1 − e(X)]2|D = 1}
[E(1 − e(X)|D = 1)]2

− 1 ≥ 0.

Hence, if the degree of heteroskedasticity satisfies the condition in Equation (10), the semiparametric estimator �̂�1 is
strictly preferred to the OLS estimator �̂�2.
Given that cmeets Equation (10), consider applying the placebo EMCS proposed in Huber et al. (2013). We assume that

the two estimators are centered at zero and their simulated distributions can be well approximated by bivariate Gaussian:(
�̂�∗1
�̂�∗2

)
∼ 

[(
0
0

)
,
1
n0

(
�̃�21 �̃�12

�̃�12 �̃�22

)]
,

where n0 is the sample size of control group in the original sample. Suppose also that the propensity scores used to generate
the placebo treatment coincide with the true propensity scores in the original data. Since the placebo-treated group is
generated from the original control group, it fails to replicate the variance of the treatment outcomes in the original data.
As a result, the variances of

√
n0�̂�∗1 and

√
n0�̂�∗2 are given by the homoskedastic version (c = 1) of Equations (8) and (9):

�̃�21 =
𝜎2𝜖

P̃r(D = 1)
Ẽ

[
1

1 − e(X)
||||D = 1

]
≥ �̃�22 =

𝜎2𝜖

P̃r(D = 1)
· 1
Ẽ[1 − e(X)|D = 1]

, (11)

where P̃r and Ẽ are the probability and expectation with respect to the sampling distribution specified in the placebo
EMCS. This inequality is strict if e(X)|D = 1 is nondegenerate. EMCS therefore incorrectly selects the OLS estimator �̂�2
as a preferred estimator.
The underlying mechanism for why EMCS goes wrong is in line with Scenario 2 in the previous subsection. Even in

a rather ideal situation where EMCS well replicates the unbiasedness of the estimators, artificially creating a placebo
treated group from the control group in the original sample distorts the variance ordering among the estimators.
Exactly the same reasoning can also invalidate structured EMCS designs if the estimated DGP from which the data are

to be simulated ignores or fails to replicate the underlying heteroskedasticity of the potential outcome distributions.
This problem can be seen in a simple simulation study. We draw 1,000 samples from a DGP of the form given by

Equation (6) with 1,000 observations per sample.7 For each sample we run 1,000 replications of the placebo and struc-
tured EMCS procedures, considering IPW andOLS as our two estimators. This gives us “the trueMSE” for each estimator
(based on the original samples) as well as 1,000 estimates of the MSE for each combination of an estimator and an EMCS
design. Looking at a simple count of how many times each procedure selects the right estimator, we see that the placebo
approach selects the superior estimator only 19 times (1.9% of the time) and the structured approach is little better at 30
times (3.0%). This compares with 97.6% and 100% for the placebo and structured procedures, respectively, when there is
no heteroskedasticity. Of course, this is a single example, and in a very stylized context; in Section 4 we will see that the
performance of these methods is also poor in a “real-world” example.

7See Supporting Information for details: Appendix D for our procedure and parameter values, and Appendix E for simulation results.
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3.2.2 An example for Scenario 3
We shift our focus to Scenario 3. We now introduce a bias in one of the estimators in the original DGP. For this purpose,
we maintain the two estimators as in the previous example, but alter the potential outcome equations from Equation (6)
with

E[Y (1)|X = x] = 𝛽0 + 𝛽1 + x′𝛽t, (12)
E[Y (0)|X = x] = 𝛽0 + x′𝛽c,

with distinct slopes, 𝛽 t ≠ 𝛽c. This causes the regression specification of Equation (7) to be misspecified so that �̂�2 is no
longer consistent for the population ATT, plimn→∞�̂�2 = 𝜃2 ≠ 𝜃0 = 𝛽1 +E(X ′|D = 1)(𝛽t − 𝛽c). See, for example, Słoczyński
(2018) for analytical characterizations of the bias. On the other hand, the semiparametric estimator �̂�1 remains consistent
and semiparametrically efficient (asymptotically attains SEB). Hence, assuming that the finite-sample distribution of
(�̂�1, �̂�2) is well approximated by its asymptotic normal approximation, we have(

�̂�1

�̂�2

)
∼ 

[(
𝜃0

𝜃0 + b2

)
,
1
n
Σ
]
.

As we argued in Scenario 3 above, the bias in �̂�2 makes �̂�2 inferior to unbiased estimator �̂�1 even when 𝜎22 < 𝜎21 if b2 or the
sample size is sufficiently large.
In the placebo EMCS procedure of Huber et al. (2013), the fact that the placebo-treated group is generated from the orig-

inal control group removes the misspecification issue of the OLS estimator caused by the nonparallel potential outcome
equations. Hence �̂�∗2 behaves as a correctly specified OLS estimator with homoskedastic errors, and the simulated distri-
bution of �̂�∗2 fails to replicate the bias in �̂�2. Since the variance ordering in EMCS obtained in Equation (11) is preserved in
the current example, EMCS erroneously concludes that the OLS estimator �̂�2 dominates the semiparametric estimator �̂�1.
In the case of structured EMCS procedures, if the DGP from which Monte Carlo samples are drawn is estimated under

misspecification, the structured EMCS misleads the estimator selection for exactly the same reason. For example, if one
were to construct the Monte Carlo DGP using linear regressions additive in Di, structured EMCS will then wrongly
conclude that the OLS estimator �̂�2 outperforms the semiparametric estimator �̂�1.
Again we perform a simple simulation, analogous to the previous subsection but modifying the potential outcome

equations as given by Equation (12). We perform 1,000 replications of each EMCS procedure using the same estimators,
and then compare in how many cases the EMCS correctly selects the estimator with the lower MSE. Again the perfor-
mance of EMCS is rather poor: placebo EMCS correctly selects IPW 2.3% of the time, and structured EMCS is correct only
0.2% of the time. See the Supporting Information Appendix for further details.

3.3 More than two estimators
Applications of EMCS often consider comparing more than two estimators. Fragility of EMCS-based estimator selection
highlighted in the two estimator examples above naturally carries over to settings with more than two estimators, since
ranking over multiple estimators consists of transitive pairwise rankings of any two candidate estimators.
The Monte Carlo exercises and the empirical application below consider a setting with seven estimators in the context

of program evaluation with observational data. Let (�̂�1, … , �̂�J) be the pool of J candidate estimators, and let the purpose
of EMCS be to obtain a complete ordering among these J estimators according to the MSE criteria.
TheEMCS-validity criteria introduced above, Pr(𝑗0 = 𝑗0) andE[MSE(�̂�𝑗0)−MSE(�̂�𝑗0 )], can be straightforwardly extended

to the case with several estimators. In addition, to measure similarity or dissimilarity between the true ranking and
estimated rankings in EMCS, it can be of interest to look at the distribution of the Kendall's tau:

𝜏 = 2
J( J − 1)

∑
i<𝑗

1{[𝜌(i) − 𝜌( 𝑗)][�̂�(i) − �̂�( 𝑗)] > 0},

where 𝜌(j) and �̂�( 𝑗), j ∈ {1, … , J}, are the ranks of estimator jwith respect to the true MSE and estimatedMSE in EMCS,
respectively. Noting 𝜏 ∈ [−1, 1] has a distribution under repeated sampling, its mean or other location parameters can
summarize how well EMCS can assess the relative performance among the candidate estimators.
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4 APPLICATION

To demonstrate the empirical relevance of the theoretical results discussed above, and to consider the extent to which
they might be a problem in practice, we provide an application of EMCS procedures to a real-world data set. In these
data we have an experimental estimate of the treatment effect. By (initially) treating the experimental estimate as the true
treatment effect, the aim is to show whether (or not) EMCS procedures can accurately recover the ranking of estimators
that we see from the experiment. We first discuss the data used, then our approach, the estimators, and finally the details
of how the EMCS procedures were conducted.

4.1 Data and context
We focus on the data for men from LaLonde (1986), used also by Heckman and Hotz (1989), Dehejia and Wahba (1999,
2002), and Smith and Todd (2001, 2005).8 A subset of these data comes from the National SupportedWork (NSW)Demon-
stration, which was a work experience program that operated in the mid-1970s at 15 locations in the USA (for a detailed
description of the program see Smith and Todd, 2005). This program served several groups of disadvantagedworkers, such
aswomenwith dependent children receivingwelfare, formerdrug addicts, ex-convicts, and school dropouts. Unlikemany
social programs, the NSW implemented random assignment among eligible participants. This random selection allowed
for straightforward evaluation of the program via a comparison of mean outcomes in the treatment and control groups.
In an influential paper, LaLonde (1986) used the design of this program to assess the performance of a large number of

nonexperimental estimators of average treatment effects, many of which were based on the assumption of unconfound-
edness. He set aside the original control group from the NSW data and created several alternative comparison groups
using data from the Current Population Survey (CPS) and the Panel Study of Income Dynamics (PSID)—two standard
data sets on the US population. His key insight was that a “good” estimator should be able to closely replicate the experi-
mental estimate of the effect of NSW using nonexperimental data. He found that very few of the estimates were close to
this benchmark. This result motivated a large number of replications and followups, and established a testbed for esti-
mators of average treatment effects under unconfoundedness (see, e.g., Heckman & Hotz, 1989; Dehejia &Wahba, 1999;
2002; Smith & Todd, 2001; 2005; Abadie & Imbens, 2011; Diamond & Sekhon, 2013). Like many other papers, we use the
largest of the six nonexperimental comparison groups constructed by LaLonde (1986), which he refers to as CPS-1.

4.2 Approach
In this paper we take the key insight of one step further. We treat the NSW–CPS data from LaLonde (1986) as a finite
population, with 185 treated observations and 7,660 comparison observations in our main example. This comes from
taking the treated sample used by Dehejia and Wahba (1999) and a trimmed version of the CPS-1 data set, where the
literature suggests conditional independence might hold using the available conditioning variables.9 From this we draw
1,000 samples, each composed of 100 treated observations and 1,900 comparison observations. We then implement the
estimators described below. For each sample and each estimator we compute the difference between the estimate and the
“true effect” ($1,794), which comes from the experimental estimate of the impact of NSW on earnings. With 1,000 such
differences for each estimator, we can compute theMSE and other performancemeasures for that estimator in these data.
Then, on each of the 1,000 samples, we implement the two EMCS procedures described in Section 2, and compare their
performances in terms of the criteria introduced in Section 3.
One limitation of this approach is that the “true effect”we calculate is subject to sampling error.We therefore consider a

second case, where we apply the insight of Smith and Todd (2005) that the control sample from the NSW can be compared
to the same nonexperimental comparison group. The NSW control sample includes people who were selected in the
same way as those actually treated, but who were randomized out of treatment. Now we know that the “true effect”
is a precise zero, since the control sample did not actually receive treatment. Thus we have an original data set of 142
“treated” observations (who in reality received no treatment) and 7,467 comparison units. This comes from taking the
“early randomassignment” control sample fromSmith and Todd (2005) a version of the CPS-1 data set trimmed to overlap

8Recent work by Calónico and Smith (2017) highlighted the effects of the NSW program for women. Prior to this, women were largely ignored in the
NSW literature subsequent to LaLonde (1986) because the analysis data file for women was not preserved.
9We use a logit model to predict propensity to be in the experimental data (either as treatment or control) versus being in the CPS-1 data. We then drop
all CPS-1 observations with propensity scores below the minimum or above the maximum in the experimental data. This is the trimmed CPS-1 data
set, which we then combine with the NSW-treated observations from Dehejia and Wahba (1999).
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with these controls. Again, we draw samples by selecting 100 treated observations and 1,900 comparison observations
from this population, with the true effect being precisely zero in each sample, and then performEMCS on these samples.
Another possible worry might be that our example applies estimators that are suitable under unconfoundedness—that

is, when potential outcomes are independent of treatment assignment, conditional on observed covariates. Smith and
Todd (2005) question this assumption in the context of the NSW–CPS data, and especially in the context of their “early
random assignment” samples. To address this concern, we take a third approach. The basic idea is to construct a popu-
lation similar to the NSW–CPS data where unconfoundedness holds by construction, and then draw samples from this.
We begin with a trimmed version of the Dehejia and Wahba (1999) data set used in the first case. Next, we perform
four-nearest-neighbormatching (with replacement) to impute the “missing” potential outcome for each observation. This
is our new population, in which we have complete knowledge of both potential outcomes, as well as a propensity score
for each observation estimated from the NSW–CPS data. We then draw random subsamples of 2,000 observations (covari-
ates, potential outcomes, and propensity scores) from this artificially created population. For each observationwe create a
perturbed propensity score by adding a logistic error to the NSW–CPS estimated propensity score. We assign to treatment
the individuals in the top quarter of the perturbed propensity score distribution (giving 500 treated and 1,500 nontreated
in each sample). By construction, treatment is therefore ensured to be independent of potential outcomes in this subsam-
ple. The overlap assumption is also satisfied, since the inclusion of a logistic error ensures that no individual is guaranteed
to be treated. The true value of ATT in this sampling process is given by 1

Pr(D=1)
·E {e(x) · [Y (1) − Y (0)]}, where e(x) is the

probability of being treated in the assignment rule based on the ranking of the perturbed propensity scores. By design we
know Y(1), Y(0), and Pr(D = 1) = 0.25, and we can approximate e(x) by the empirical frequencies in the simulations.
Finally, we implement EMCS on the samples drawn in this way.

4.3 Estimators
In all our simulations we study the impact of the NSW program on earnings in 1978. We consider seven nonexperimental
estimators: linear regression, Oaxaca–Blinder, inverse probability weighting (IPW), doubly-robust regression, uniform
kernel matching, nearest neighbor matching, and bias-adjusted nearest neighbor matching. For details see Appendix B.
In each case we focus on the average treatment effect on the treated (ATT), unless a given method does not allow for
heterogeneity in effects (in which case we estimate the overall effect of treatment). As noted above, all of these estimators
are based on the assumption of unconfoundedness.
We use a single set of control variables in all our simulations. Following Dehejia and Wahba (1999) and Smith and

Todd (2005), we control for age, age squared, age cubed, education, education squared, whether a high school dropout,
whether married, whether black, whether Hispanic, earnings in months 13–24 prior to randomization, earnings in 1975,
nonemployment in months 13–24 prior to randomization, nonemployment in 1975, and the interaction of education and
earnings in months 13–24 prior to randomization.
We conduct all our simulations in Stata and use several user-written commands in our estimation procedures:nnmatch

(Abadie et al., 2004), oaxaca (Jann, 2008), and psmatch2 (Leuven & Sianesi, 2003).

4.4 Procedures
In Section 2 we noted that for the placebo design we require some choice of 𝜋 and 𝜆, where 𝜆 determines the degree of
covariate overlap between the “placebo-treated” and “placebo-control” observations and 𝜋 determines the proportion of
“placebo-treated.”We choose 𝜋 to ensure that the proportion of the “placebo-treated” observations in each placebo EMCS
replication is equal to the proportion of treated units in the sample.10 We also followHuber et al. (2013) in choosing 𝜆 = 1
as well as in using a logit model to estimate the propensity score.
The structured design requires more choices, in particular howwe specify the joint probability distribution as the prod-

uct of the marginal distribution for treatment status and some conditional distributions. As discussed in Section 2, we
begin each structured EMCS replication by generating a fixed number of treated and nontreated observations to match
the numbers in the sample.We then order the covariates, regress each covariate on the preceding covariates (using logistic
regression for binary covariates), and use this to define the conditional distribution for that covariate. In EMCS replica-

10It should be noted, however, that the way these data sets were constructed by LaLonde (1986) results in samples that are best described as choice
based.More precisely, the treatment and control groups are heavily overrepresented relative to their population proportions. See Smith and Todd (2005)
for a further discussion of this issue.
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tions the covariates are then drawn in the same order, from the appropriate conditional distribution. Full details of the
procedure are provided in Appendix C.

5 RESULTS

We now describe the results of our tests of the two EMCS procedures—placebo and structured—in the context of our
real-world data. As described in Section 4.2, we perform three sets of tests. First, we apply the two procedures to the NSW
treatment sample, combined with the CPS-1 comparison data set. We find the performance of the procedures to be poor
when it comes to finding the estimator with the lowest bias. When we study MSE (i.e., account also for variance), per-
formance is better. This is because the rankings of estimators are mainly being driven by the variance, and both EMCS
methods do well at replicating the variance components. However, given this, we also test a simple bootstrap procedure
and find that it is more effective at picking the best estimator. Then, we follow Smith and Todd (2005) in using the NSW
controls as our “treated” sample instead: now the effectwe intend to estimatemust be zero for sure, removingworries that
poor performance might be an artifact caused by sampling uncertainty around the true effect. We find that the previous
results are maintained. Finally, we use an adjusted version of the original data, constructed so that conditional indepen-
dence necessarily holds, to allay concerns that poor performance is driven by a context in which unconfoundedness may
not hold. Again, we find that the EMCS procedures do not perform well on bias, and are better on MSE, although here
the bootstrap does not clearly dominate.

5.1 Testing EMCS in the NSW data
Our first results using “real-world” data focus on the variant of the original NSW treatment sample constructed by Dehe-
jia andWahba (1999), combined with a trimmed version of the CPS-1 comparison data set. We create 1,000 samples from
the original data set by sampling 100 treated and 1,900 nontreated observations from the 185 possible treated and 7,660
comparison units in the original data. We implement the two EMCS procedures 1,000 times on each of the 1,000 samples,
giving a total of 1,000,000 replications for each EMCS procedure. In each replication we implement the seven estimators
described earlier, and measure how well the two EMCS procedures help us assess the relative performance of the estima-
tors. We might measure performance of an estimator in terms of absolute bias or MSE (which also takes into account its
variance). Performance of EMCS (“EMCS-validity”) is then measured by how well the EMCS procedure replicates these
features of an estimator in the original samples. In Section 3, we described two measures of EMCS performance suitable
for when we have many estimators:

1. the average regret—that is, average difference in absolute bias/MSE between the estimator selected by EMCS and the
estimator with the actual minimum absolute bias/MSE; and

2. the average Kendall's tau (Kendall's rank correlation coefficient), which measures the similarity between the ranking
of estimators suggested by EMCS and the “true” ranking from the original samples.

For ease of interpretation, it is also useful to normalize the values of average regret. Our discussion below focuses on the
average regret as a percentage of the minimum value of absolute bias/MSE. However, we also consider an alternative
normalization, where we divide the average regret for a given EMCS procedure by the average regret for random selection
of estimators (which we discuss further below). Finally, we also consider an additional measure, which is straightforward
to interpret, namely:

3. the average correlation in absolute bias/MSE (rather than in the rankings, as given by Kendall's tau).

In each case the comparison is between what the EMCS procedure suggests and the results from taking the “true effect”
in the original data, and then calculating the absolute bias/MSE of each estimator across the 1,000 samples.
To provide a benchmark for the performance of EMCS, we also include results from two other procedures. In the first

we simply apply nonparametric bootstrap to the same samples used for the EMCS procedures.11 We can then compare
estimators on absolute bias, variance, or MSE, and also see how the resulting rankings compare to those from the original
samples. Our estimates of absolute bias and MSE are centered around the point estimates in each original sample. In the
second we do not create any samples, but simply rank estimators randomly. This provides a “worst-case” benchmark:

11Precisely, we sample with replacement, and draw replication samples of the same size as the original sample. In consequence, our bootstrap samples
are also of the same size as the structured samples. Both are larger than the placebo samples, which are of the size of the original comparison subsample.
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TABLE 1 EMCS-validity using different performance metrics

EMCS approach Placebo Structured Bootstrap Random
Absolute bias (minimum = 16)
Average regret (% of minimum) 3,067 3,766 1,000 1,184
Average regret (% of random) 259.0 318.1 84.5 100.0
Average Kendall's tau −0.214 −0.372 0.016 0
Average correlation −0.437 −0.505 0.275 —
Mean squared error (minimum = 512,322)
Average regret (% of minimum) 18.2 16.3 7.9 141.9
Average regret (% of random) 12.8 11.5 5.6 100.0
Average Kendall's tau 0.599 0.635 0.828 0
Average correlation 0.647 0.791 0.809 —
Variance (minimum = 454,278)
Average regret (% of minimum) 2.7 11.2 1.9 148.0
Average regret (% of random) 1.8 7.6 1.3 100.0
Average Kendall's tau 0.767 0.812 0.883 0
Average correlation 0.895 0.920 0.862 —

Note. “EMCS approach” denotes the way in which the empirical Monte Carlo samples were generated. “Placebo” and
“Structured” generate samples using the placebo and structured approaches described in Section 2. “Bootstrap” gener-
ates nonparametric bootstrap samples by sampling with replacement the same number of observations as the original
data. “Random” does not generate samples but instead randomly assigns rankings to the estimators (hence statistics are
only available for the performance metrics based on rankings). The absolute bias, mean squared error, and variance are
features of estimators. The “minimum” value for each feature is its lowest value among our estimators in the original
data-generating process (i.e., we have one value of each feature for each estimator in the “original samples” and we report
the lowest of these values). See Supporting Information Appendix F for more details. Four performancemeasures are used
for each of these statistics. “Average regret” measures the average increase in the statistic from choosing the estimator actu-
ally selected by the EMCS approach rather than the estimator with the minimum value of this statistic, as a percentage of
(i) that minimum value or (ii) the average regret for random selection of estimators. “Average Kendall's tau” measures the
average correlation in the ranking of estimators provided by the EMCS approach relative to the ranking in the original sam-
ples. “Average correlation” measures the average correlation in the actual values of the statistic (rather than the ranking)
provided by the EMCS approach relative to the values in the original samples. All averages are taken with respect to 1,000
original samples; for each sample, a separate simulation study was conducted. The results for random selection of estima-
tors are analytical; instead of actually generating random rankings, we report the known values of expected Kendall's tau
(zero) and expected regret with random rankings. The latter value is equal to the average regret across estimators, with an
equal probability of each estimator to be selected as “best.”

suppose a researcher knows nothing at all about performance and just picks an estimator blindly—how would they do?
Herewe cannot compute a result for the correlation, but can for average regret andKendall's tau. Table 1 shows the results
from these simulations. Supporting Information Appendix F provides further details.
The first result is that performance of both EMCS procedures in terms of bias is very poor. The average regret in terms of

absolute bias, as a percentage of the absolute bias for the best estimator, is 3,067% (3,766%) for placebo (structured)—an
order of magnitude larger than the minimum value. It is worse than choosing completely randomly, which would be
1,184% worse than the best estimator, and worse than the bootstrap, 1,000%. Looking at the ranking across estimators,
the average Kendall's tau is−0.21 (−0.37) for placebo (structured). Thus the rankings produced by EMCS are, on average,
negatively correlatedwith the ranking in the original samples. This is worse than random,which gives 0.00, and bootstrap,
0.02. The same pattern is seen in the average correlation coefficients for absolute bias, which are −0.44 (−0.51).
A researcher might be interested in knowing about performance of estimators in terms of MSE rather than only

considering bias. Here EMCS performs much better. The average regret for placebo (structured) is now only 18%
(16%)—much better than random (142%). Similarly, average Kendall's tau is now 0.60 and 0.64 for placebo and struc-
tured, respectively—much better than 0.00 for random. The bottom panel of Table 1 shows that this is driven by themuch
better performance in replicating the variances. Since the rankings here are mostly determined by the variance, being
able to reproduce variances substantially improves the measures of performance relative to the metrics based on absolute
bias.
However, looking at our other benchmark case—the bootstrap—we see that it outperforms both EMCS methods in

terms of MSE. Average regret is lower at 7.9%, and the average Kendall's tau is much higher, at 0.83. Given that MSE
performance for EMCS is driven by the variance components, this does not seem surprising. The bootstrap is a simpler
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TABLE 2 EMCS-validity ensuring no sampling error in the treatment effect

EMCS approach Placebo Structured Bootstrap Random
Absolute bias (minimum = 954)
Average regret (% of minimum) 30.2 41.6 10.4 19.0
Average regret (% of random) 158.9 219.1 54.9 100.0
Average Kendall's tau −0.274 −0.466 0.320 0
Average correlation −0.418 −0.822 0.263 —
Mean squared error (minimum = 1,222,627)
Average regret (% of minimum) 22.5 32.1 17.4 94.4
Average regret (% of random) 23.9 34.0 18.4 100.0
Average Kendall's tau 0.645 0.549 0.809 0
Average correlation 0.843 0.814 0.746 —
Variance (minimum = 296,671)
Average regret (% of minimum) 1.2 5.0 9.0 262.6
Average regret (% of random) 0.5 1.9 3.4 100.0
Average Kendall's tau 0.950 0.665 0.762 0
Average correlation 0.959 0.934 0.833 —

Note. See note to Table 1.

procedure than the two EMCS methods, and its ability to help us understand the variability of estimators is well known.
It therefore seems like a potentially valuable path with fewer design choices than EMCS.

5.2 Removing sampling error from the “true effect”
The previous subsection calculated the MSE for each estimator by comparing the value of the estimate in each sample to
a “true effect” measured using the experiment. One concern might be that the estimate from the experiment is subject to
sampling error, and this might somehow negatively affect our performancemeasures for EMCS. To test this, we now use
as our “treated” observations the “early random assignment” NSW control sample from Smith and Todd (2005). Since
these individuals were selected for the program in the same way as those actually treated, but were then randomized out,
the actual treatment effect for them is precisely zero. We therefore repeat the exercise on these data, again implementing
the two EMCS procedures 1,000 times on each of the 1,000 original samples. Table 2 documents the results. Supporting
Information Appendix F provides further details.
Our conclusions are similar to those in the previous subsection. In terms of absolute bias, the average regret is much

lower than previously, at 30% (42%) for placebo (structured). However, this is mostly driven by a large increase in the
minimum value of absolute bias, since it is much more difficult to recover the true effect of NSW in these data (Smith &
Todd, 2005). This can alternatively be seen from normalizing values by the average regret for random selection of esti-
mators. In the first simulation study, the average regret for placebo (structured) is 2.6 (3.2) times larger than for random;
in the second, it is 1.6 (2.2) times larger. While these values continue to be smaller in the second simulation study, their
overall magnitudes are similar in both cases. This also makes it clear that EMCS is still worse than choosing at random
(average regret of 19%) and bootstrap (10%). As before, the average Kendall's tau is negative for placebo (structured) at
−0.27 (−0.47), which is worse than random (0.00) and bootstrap (0.32) as well. On MSE performance is better, with aver-
age regret of 23% (32%) and average Kendall's tau of 0.65 (0.55). These are much better than random (94% and 0.00), but
worse than bootstrap (17% and 0.81).

5.3 Ensuring unconfoundedness holds
Another potential concern is whether the conditional independence assumption holds. Here we take the approach
described in Section 4.2 to generate 1,000 samples in which conditional independence holds by construction. Then,
we implement the two EMCS procedures 500 times on each of these samples. Table 3 displays the results. Supporting
Information Appendix F provides further details.
The previous results are broadlymaintained even after ensuring conditional independence. In terms of absolute bias the

performance of both EMCS approaches is similar to random, though now slightly better than bootstrap. In terms of MSE
both procedures perform better than random selection of estimators and also marginally better than bootstrap. Average
regret in terms ofMSE is worse than in the first case, though average Kendall's tau is a little higher, so it is also not obvious
that contexts where conditional independence holds should necessarily see better performance of EMCS procedures.
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TABLE 3 EMCS-validity ensuring unconfoundedness holds

EMCS approach Placebo Structured Bootstrap Random
Absolute bias (minimum = 68)
Average regret (% of minimum) 593.5 670.1 972.1 522.0
Average regret (% of random) 113.7 128.4 186.2 100.0
Average Kendall's tau −0.003 0.057 −0.300 0
Average correlation −0.048 0.217 −0.263 —
Mean squared error (minimum = 340,300)
Average regret (% of minimum) 260.1 89.7 276.1 682.9
Average regret (% of random) 38.1 13.1 40.4 100.0
Average Kendall's tau 0.737 0.729 0.632 0
Average correlation 0.943 0.790 0.778 —
Variance (minimum = 137,574)
Average regret (% of minimum) 0 0.3 0 1,631
Average regret (% of random) 0 0 0 100.0
Average Kendall's tau 0.768 0.727 0.752 0
Average correlation 0.951 0.820 0.820 —

Note. See note to Table 1.

6 DISCUSSION

Advances in econometrics have left the empirical researcher blessed with a wealth of possible treatment effect estimators
from which to choose. They have not yet provided clear guidance on which of these estimators should be preferred in
which context. In this paper we studied two proposals that suggest an approach to choosing an appropriate estimator for a
given context. The first approach (placebo) suggests a way to introduce placebo treatments to some control observations in
a data set, and studies howwell estimators can pick up the true zero effect. The second approach (structured) creates data
from a known DGP whose parameters are estimated from features of the original data, and studies how well estimators
can pick up the implied true effect in the DGP.
We showed theoretically that both approaches can only be guaranteed to work under rather restrictive conditions:

specifically,when they can correctly reproduce both the biases and the ordering of the variances of estimators.We showed
simple practical cases where one or other of these might fail, and gave an example of the consequences based on sim-
ulations from an artificial DGP. To provide a real-world example, we also implemented the EMCS procedures in the
NSW–CPS data, where we know the “true effect” of the program. This allowed us to compute actual performance of the
estimators in samples from the original data, and compare this to what EMCS would suggest if applied to these samples.
We showed that in this example EMCS performs badly on ordering estimators in terms of absolute bias, and the estimator
it suggests is often many times worse than the best (or even than selecting randomly). In this example both EMCS proce-
dures perform much better in terms of MSE because reproducing the variance term turns out to drive the MSE in these
data. But this leads the methods to be no better (and sometimes substantially worse) than a simple bootstrap procedure.
These results are unfortunate, but nevertheless important. There remains no silver bullet that can assist empirical

researcherswith the “right” or “best” estimator for a particular context. In the absence of a clear choice driven by research
design, the best advice at this stage is likely to be implementing a number of estimators, and then considering the range
of estimates provided, as Busso et al. (2014) also suggest.
One possible future alternative, recently proposed, is synth-validation (Schuler et al., 2017). This approach is related to

cross-validation and is based on estimating “the estimation error of causal inferencemethods applied to a given data set.”
The authors provide simulations which suggest that this “lowers the expected estimation error relative to consistently
using any single method.” Further work is needed to test how general this approach is, and whether it can reliably guide
researchers in selecting estimators.
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APPENDIX A: THEORY

A.1 Derivations of Equations (8) and (9)

A general expression of SEB for ATT in the absence of knowledge of the propensity score is given by

SEBATT = 1
Pr(D = 1)

E

{
var[Y (1)|X] + e(X)

1 − e(X)
var[Y (0)|X] + [𝜏(X) − 𝜃0]2

||||D = 1
}

.

Plugging the current specifications for var[Y(1)|X] and var[Y(0)|X] and noting 𝜏(X) = 𝜃0 for all X, the expression of
Equation (8) follows.
By the partialling-out argument of the least squares regression and the linear probability specification of the propensity

score, the asymptotic variance of
√
n(�̂�2 − 𝜃0) can be written as

avar[
√
n(�̂�2 − 𝜃0)] = E{𝜖2[D − e(X)]2}

{E([D − e(X)]2)}2

=
E
{
var[Y (1)|X][1− e(X)]2e(X) + var[Y (0)|X]e(X)2[1 − e(X)]

}
{E(e(X)[1 − e(X)]}2

=
𝜎2𝜀

Pr(D = 1)
·
E
{
c[1 − e(X)]2 + e(X)[1 − e(X)]|D = 1

}
{E[1 − e(X)|D = 1]}2

,

where the third line follows from Bayes rule applied to each denominator and numerator.□

A.2 Proof of Equation (10)

Rewrite Equations (8) and (9) as

𝜎21 =
𝜎2𝜀

Pr(D = 1)

[
c − 1 + E

(
1

1 − e(X)
||||D = 1

)]
, (13)

𝜎22 =
𝜎2𝜀

Pr(D = 1)

[
(c − 1) · E{[1 − e(X)]2|D = 1}

{E[1 − e(X)|D = 1]}2
+ 1
E[1 − e(X)|D = 1]

]
. (14)

Hence we obtain

𝜎22 − 𝜎21 =
𝜎2𝜀

Pr(D = 1)
[(c − 1)Δ2 − Δ1] , (15)

Δ1 ≥ 0 by Jensen's inequality, and Δ2 ≥ 0. Hence the condition for 𝜎22 > 𝜎21 follows as in Equation (10).□

APPENDIX B: EMPIRICAL APPLICATION—ESTIMATORS

We use seven estimators in our empirical application.

1. Linear regression (OLS).
2. Oaxaca–Blinder—we follow Kline (2011) in using the Oaxaca–Blinder decomposition to estimate the ATT.
3. Inverse probability weighting (IPW)—we first estimate the propensity score using a logit model, and then use inverse

weighting with normalized weights to estimate the ATT.
4. Doubly robust regression—as in Wooldridge (2007) and Słoczyński and Wooldridge (2018), we use the

inverse-probability-weighted regression-adjustment (IPWRA) estimator. This is effectively a combination of the two
estimators above, IPW and Oaxaca–Blinder. It satisfies the double robustness property.

5. Uniform kernel matching—we first estimate the propensity score using a logit model, and then match on propensity
scores using a uniform kernel. We select the bandwidth on the basis of leave-one-out cross-validation (as in Busso
et al. 2009 and Huber et al. 2013), using a search grid 0.005 × 1.25g−1 for g = 1, 2, … , 15. The computational time of
doing this for each replication is prohibitive. Consequently, we calculate this once for each original sample, and use
the recovered optimal bandwidth in all EMCS replications for that sample.
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6. Nearest neighbor matching—nearest neighbor matching on propensity scores, which are first estimated from a logit
regression, with matching on the single nearest neighbor. We match with replacement; if there are ties, all of the tied
observations are used.

7. Bias-adjusted nearest neighbor matching—as above, but correcting bias as in Abadie and Imbens (2011), since nearest
neighbor matching is not

√
n-consistent.

APPENDIX C: EMPIRICAL APPLICATION—STRUCTURED EMCS PROCEDURE

Herewe detail precisely the procedure followed to implement the structured EMCS in our empirical application.As noted
previously, we begin each structured EMCS replication by generating a fixed number of treated and nontreated observa-
tions to match the number in the sample. We then draw an employment status pair of u74 and u75 (nonemployment
in months 13–24 prior to randomization and nonemployment in 1975), conditional on treatment status, to match the
observed conditional joint probability. For individuals who are employed in only one period, an income is drawn from
a log-normal distribution conditional on treatment and employment statuses, with mean and variance calibrated to the
respective conditional moments in the data. Where individuals are employed in both periods a joint log-normal distri-
bution is used, again conditioning on treatment status. In all cases, whenever the income draw in a particular year lies
outside the relevant support observed in the data, conditional on treatment status, the observation is replaced with the
limit point of the empirical support, as also suggested by Busso et al. (2014).
Wemodel the joint distribution of the remaining control variables as a particular tree-structured conditional probability

distribution, so that we can better fit the correlation structure in the data. The process for generating these covariates is
as follows:

1. The covariates are ordered: treatment status, employment statuses, income in each period, whether a high school
dropout (nodegree), education (educ), age, whether married, whether black, and whether Hispanic. This ordering
is arbitrary, and a similar correlation structure would be generated if the ordering were changed.

2. Using the sample on which the EMCS is being performed, each covariate from nodegree onward is regressed on all
the covariates listed before it (we use the logit model for binary variables).12 These regressions are not to be interpreted
causally; they simply give the conditional mean of each variable given all preceding covariates.

3. In the simulated data set, covariates are drawn sequentially in the same order. For binary covariates a temporary value
is drawn from a  [0, 1] distribution. Then the covariate is equal to one if the temporary value is less than the condi-
tional probability for that observation. The conditional probability is found using the values of the existing generated
covariates and the estimated coefficients from step 2. Age and education are drawn from a normal distribution whose
mean depends on the other covariates and whose variance is equal to that of the residuals from the relevant model.
Again, we replace extreme values with the limit of the support, conditional on treatment status (for education, also
conditional on dropout status).

The outcome studied is earnings in 1978, re78. The simulated outcome, Yi for individual i, is then generated in two
steps. In the first step, we generate a conditionalmean using the parameters of a flexible linearmodel fitted to the sampled
data. Precisely, we estimate (𝜹0, 𝜹1) from the following linear model:

E(Y |D,X) = (1 − D)X𝛿0 + DX𝛿1. (16)

The predicted conditional mean in the replication is then calculated using the estimated coefficients (�̂�0, �̂�1) from above,
and the simulated treatment status and covariates,Di andXi. In the second step, the simulated outcome, Yi, is determined
as a draw from a normal distribution with the estimated conditional mean (1 − Di)Xi�̂�0 + DiXi�̂�1 and the variance that
is fitted to that of the residuals from the model in Equation (16), conditional on treatment status. Once again, we replace
extreme values of re78 with the limit point of the support, also conditional on treatment status. “True effects” in each
replication, 𝜃0, are calculated using the conditional means for both treatment statuses, and the difference in conditional
means—that is, the individual-level treatment effect—is averaged over the subsample of treated units. Thus we implicitly
focus on the sample average treatment effect on the treated (SATT), not on the population average treatment effect on
the treated (ATT). Both of these measures can be used as the benchmark effect in simulations and we have no particular
preference for either.

12One exception is educ, which is regressed on the prior listed covariates conditional on nodegree. Clearly, it is not possible for a high school dropout
to have 12 years of schooling or more; it is also not possible for a nondropout to have less than 12 years of schooling.
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