
When Should We (Not) Interpret Linear IV Estimands as LATE?∗

Tymon Słoczyński†
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Abstract

In this paper I revisit the interpretation of the linear instrumental variables (IV) esti-
mand as a weighted average of conditional local average treatment effects (LATEs).
I focus on a situation in which additional covariates are required for identification
while the reduced-form and first-stage regressions may be misspecified due to an im-
plicit homogeneity restriction on the effects of the instrument. I show that the weights
on some conditional LATEs are negative and the IV estimand is no longer interpretable
as a causal effect under a weaker version of monotonicity, i.e. when there are compli-
ers but no defiers at some covariate values and defiers but no compliers elsewhere. The
problem of negative weights disappears in the interacted specification of Angrist and
Imbens (1995), which avoids misspecification and seems to be underused in applied
work. I illustrate my findings in an application to the causal effects of pretrial detention
on case outcomes. In this setting, I reject the stronger version of monotonicity, demon-
strate that the interacted instruments are sufficiently strong for consistent estimation
using the jackknife methodology, and present several estimates that are economically
and statistically different, depending on whether the interacted instruments are used.
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1 Introduction

Many instrumental variables are only valid after conditioning on additional covariates. The draft
eligibility instrument in Angrist (1990) requires controlling for the year of birth. The college prox-
imity instrument in Card (1995) is invalid without conditioning on several individual characteristics
of workers (Kitagawa, 2015). Even in the case of randomized experiments with noncompliance, it
is often necessary to control for covariates correlated with treatment probability, such as household
size and survey wave in Finkelstein et al. (2012).

When conditioning on additional covariates is necessary for instrument validity, interpreting
the linear instrumental variables (IV) and two-stage least squares (2SLS) estimands becomes com-
plicated. Angrist and Imbens (1995) (hereafter, AI) provide an influential interpretation of the
2SLS estimand in this context as a convex combination of conditional local average treatment ef-
fects (LATEs), i.e. average effects of treatment for individuals whose treatment status is affected
by the instrument. However, this result is restricted to saturated models with discrete covariates
and first-stage regressions that include a complete set of interactions between these covariates and
the instrument. Such specifications are rare in empirical work, as is evident from several recent
surveys of applications of IV methods.1 This makes AI’s result inappropriate for interpreting the
vast majority of IV estimates encountered in economic applications (cf. Abadie, 2003).

In this paper I revisit the question of the causal interpretability of standard instrumental vari-
ables estimands. In particular, I focus on whether these estimands can be written as weighted
averages of conditional LATEs with positive weights and, if so, whether these weights have an
intuitive interpretation. To do so, I consider two variants of the usual monotonicity assumption:
“weak monotonicity,” which postulates that at every covariate value, the instrument either does
not discourage or does not encourage anyone to take treatment, and “strong monotonicity,” which
additionally requires that the direction of this effect is uniform across covariate values.

My first contribution is to demonstrate that under weak monotonicity, the weights on some
conditional LATEs may be negative in the usual application of IV, which restricts the first-stage
effects of the instrument to be homogeneous. This finding implies that the resulting estimand is not
a useful summary measure of average treatment effects; this parameter could be negative (positive)
even if treatment effects are positive (negative) for everyone in the population. Under the same
assumptions, all weights are necessarily positive in AI’s interacted specification.

My second contribution is to explicitly compare the weights in both specifications with the
“desired” weights, which recover the unconditional LATE parameter. Under strong monotonicity,
when the weights in the usual application of IV and AI’s specification are positive, both specifica-

1Blandhol, Bonney, Mogstad, and Torgovitsky (2022) consider a sample of 99 papers and find a single application
of AI’s specification. Mogstad, Torgovitsky, and Walters (2021) consider a sample of 122 papers and identify seven
with specifications that include some covariate interactions with a single instrument.
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tions overweight the effects in groups with large variances of the instrument, while the latter also
overweights the effects in groups with strong first stages. It follows that the usual application of
IV might be preferable when violations of strong monotonicity are not an issue.

However, if weak monotonicity is plausible but strong monotonicity is not, my theoretical
results suggest that AI’s interacted specification is preferable to the usual application of IV. Unfor-
tunately, AI’s specification is also difficult to estimate without bias; when the researcher divides the
sample into many groups and subsequently creates an interacted instrument for each, 2SLS will be
subject to the “many instrument” bias (see, e.g., Bekker, 1994). An alternative approach to estimat-
ing AI’s specification, such as the fixed effect jackknife IV (FEJIV) estimator of Chao, Swanson,
and Woutersen (2023), should be used instead. Another concern about specifications with many
instruments is whether they are jointly strong enough to enable consistent estimation. In this con-
text, I consider a recent pretest for weak identification developed by Mikusheva and Sun (2022).
As an illustration, I perform an extensive simulation study. In these simulations, Mikusheva and
Sun (2022)’s pretest does a great job differentiating between cases where the best estimators of
AI’s specification, such as FEJIV, perform well and cases where all estimators perform badly.

To corroborate the concern about violations of strong monotonicity, I also replicate a sample
of 988 instrumental variables regressions from 25 papers published in journals of the American
Economic Association between 2006 and 2015. Every specification in my sample is based on
a linear first-stage regression that restricts the effects of the instrument to be homogeneous. If
strong monotonicity is violated but weak monotonicity is not, the homogeneous first stage will be
misspecified and the conditional first stage will be positive for some covariate values but negative
for others. First, I present strong suggestive evidence of the latter phenomenon, which directly
translates to the incidence of negative weights in the usual application of IV. Then, I formally
reject the null hypothesis of first-stage homogeneity in more than 70% of specifications in an
average paper, despite accounting for multiple hypothesis testing.

Finally, I illustrate my findings in an application to the causal effects of pretrial detention on
case outcomes (Stevenson, 2018). Here, I consider several saturated specifications, which allows
me to compare the estimates of AI’s specification with the usual application of IV. I can also
formally test whether the conditional first stage is positive for some covariate values and negative
for others, and I conclusively reject the null hypothesis of sign homogeneity. The estimates based
on AI’s specification are smaller than in the usual application of IV, and the difference is often
statistically significant. Mikusheva and Sun (2022)’s pretest rejects in every case I consider, which
supports the notion that the estimates based on AI’s specification are preferable.

Two papers closely related to this are Kolesár (2013) and Blandhol et al. (2022). Like this pa-
per, Kolesár (2013) studies the interpretation of 2SLS estimands under weak monotonicity while
also considering the probability limits of several jackknife-type estimators, limited information
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maximum likelihood (LIML), and other alternatives to 2SLS. Kolesár (2013)’s main result on
2SLS is not particular to any specification but instead represents a generic two-step IV estimand
as a weighted average of conditional LATEs. The resulting weights are positive, subject to an ad-
ditional condition that needs to be verified on a case-by-case basis.2 In contrast, this paper focuses
specifically on the usual application of IV and AI’s interacted specification. The benefit is that
this allows me to considerably simplify the representation and obtain results that are more trans-
parent and easy to interpret. This includes the novel result that in the usual application of IV, the
weights on some conditional LATEs may be negative under weak monotonicity. In another contri-
bution, released after this paper first circulated, Blandhol et al. (2022) focus on the consequences
of misspecification of the model for the instrument propensity score that is implicit in IV and 2SLS
estimation. In this paper I focus on violations of strong monotonicity and their implications.

The remainder of the paper is organized as follows. Section 2 introduces my framework. Sec-
tion 3 provides my theoretical contributions, a review of the literature on many instruments, and a
simulation study. Section 4 studies negative first stages and first-stage heterogeneity in a sample
of recent applications of IV methods and illustrates my findings in an analysis of the causal effects
of pretrial detention on case outcomes. Section 5 concludes. The appendix contains my proofs as
well as additional simulation and estimation results.

2 Framework

In this section I formally define the objects of interest, i.e. the conditional and unconditional IV
and 2SLS estimands. I reserve the term “2SLS” for the appropriate estimand in a model with
interacted instruments; see equation (3) below. When a single instrument is used instead, I use
the term “IV” or “linear IV”; see equation (2). In what follows, I also review identification in
the LATE framework with covariates (cf. Abadie, 2003). Throughout the paper I assume that the
appropriate moments exist whenever necessary.

2.1 Notation and Estimands

Suppose we are interested in the causal effects of a treatment, D ∈ {0, 1}, on an outcome, Y = Y(D),
where Y(1) and Y(0) are potential outcomes. An instrument, Z ∈ {0, 1}, is also available, and it
determines which of the potential treatment states, D(1) and D(0), is observed, D = D(Z). In
principle, we could let Y = Y(Z,D), but we will rule out direct effects of Z on Y below. Finally,
let X = (1, X1, . . . , XJ) denote a row vector of covariates. In some cases I will allow for the

2This condition essentially requires that the first stage postulated by the researcher provides a sufficiently good
approximation to the true first stage (cf. Heckman and Vytlacil, 2005).
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possibility that additional instruments have been created by interacting Z with all elements of X;
then, ZC = (Z,ZX1, . . . ,ZXJ) will be used to denote the resulting row vector of instruments.

To provide motivation for what follows, let us consider the standard single-equation linear
model for Y:

Y = Dβ + Xρ + υ, (1)

where X and the instrument(s) are assumed to be uncorrelated with the error term υ. Also, β is
the coefficient of interest. In this paper I do not assume that equation (1) is correctly specified; in
particular, I allow the effect of D on Y to be correlated with both observables and unobservables.

In practice, however, many researchers act as if this model is correctly specified and use linear
IV or 2SLS for estimation. In what follows, I will focus on the interpretation of the probability
limits of the IV and 2SLS estimators of β when equation (1) is possibly misspecified. With a single
instrument, the probability limit of linear IV or, simply, the (linear) IV estimand is

βIV =
[(

E
[
Q′W

])−1 E
[
Q′Y

]]
1
, (2)

where W = (D, X), Q = (Z, X), and [·]k denotes the kth element of the corresponding vector.
Clearly, when a single instrument is available, equation (2) characterizes the target of estimation
in most empirical studies, which I also call the “usual” or “standard” estimand. This specification
corresponds to reduced-form and first-stage regressions that project Y and D on X and Z, excluding
any interactions between X and Z. Hence, I also refer to this specification as “noninteracted.”

On the other hand, if a vector of interacted instruments, ZC, is used in 2SLS estimation of
equation (1), the relevant probability limit or, simply, the 2SLS estimand is

β2SLS =

[(
E

[
W ′QC

] (
E

[
Q′CQC

])−1 E
[
Q′CW

])−1
E

[
W ′QC

] (
E

[
Q′CQC

])−1 E
[
Q′CY

]]
1
, (3)

where QC = (ZC, X). In this specification, the corresponding reduced-form and first-stage regres-
sions project Y and D on X and ZC, which implies that the effects of Z on Y and D are allowed
to vary with X due to the interactions between X and Z. Thus, I also refer to this specification as
“interacted” or “fully interacted.”

Regardless of the implicit restrictions on the effects of the instrument, the true first stage can
be written as

E [D | X,Z] = ψ(X) + ω(X) · Z, (4)

where
ω(x) = E [D | Z = 1, X = x] − E [D | Z = 0, X = x] (5)

is the conditional first-stage slope coefficient or, equivalently, the coefficient on Z in the regression
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of D on 1 and Z in the subpopulation with X = x. Similarly, the conditional IV (or Wald) estimand
can be written as

β(x) =
E [Y | Z = 1, X = x] − E [Y | Z = 0, X = x]
E [D | Z = 1, X = x] − E [D | Z = 0, X = x]

. (6)

This parameter is equivalent to the coefficient on D in the IV regression of Y on 1 and D in the
subpopulation with X = x, with Z as the instrument for D.

2.2 Local Average Treatment Effects

In the LATE framework of Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996), the
population consists of four latent groups: always-takers, for whom D(1) = D(0) = 1; never-takers,
for whom D(1) = D(0) = 0; compliers, for whom D(1) = 1 and D(0) = 0; and defiers, for whom
D(1) = 0 and D(0) = 1. As demonstrated by Imbens and Angrist (1994), if, among other things,
we rule out the existence of defiers and assume that X is orthogonal to Z, the unconditional IV
estimand, βIV = E[Y |Z=1]−E[Y |Z=0]

E[D|Z=1]−E[D|Z=0] , recovers the average treatment effect for compliers, also referred
to as the local average treatment effect (LATE).

Some of my results will allow for the existence of both compliers and defiers, and hence
throughout this paper I instead follow Kolesár (2013) in defining the LATE as

τLATE = E [Y(1) − Y(0) | D(1) , D(0)] , (7)

i.e. the average treatment effect for individuals whose treatment status is affected by the instrument.
This group includes both compliers and defiers; it will be restricted to compliers whenever the
existence of defiers is ruled out. It is useful to note that this unconditional LATE parameter can
also be written as

τLATE =
E [π(X) · τ(X)]

E [π(X)]
, (8)

where
τ(x) = E [Y(1) − Y(0) | D(1) , D(0), X = x] (9)

is the conditional LATE and
π(x) = P [D(1) , D(0) | X = x] (10)

is the conditional proportion of compliers and defiers. The following assumption, together with
additional assumptions below, will be used to identify τ(x) and π(x), and thereby also τLATE.

Assumption IV.

(i) (Conditional independence)
(
Y(0, 0),Y(0, 1),Y(1, 0),Y(1, 1),D(0),D(1)

)
⊥ Z | X;

(ii) (Exclusion restriction) P [Y(1, d) = Y(0, d) | X] = 1 for d ∈ {0, 1} a.s.;
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(iii) (Relevance) 0 < P [Z = 1 | X] < 1 and P [D(1) = 1 | X] , P [D(0) = 1 | X] a.s.

Assumption IV is standard but not sufficient to identify τ(x) and π(x). It is also necessary to
restrict the existence of defiers (Imbens and Angrist, 1994). The following assumption, due to
Abadie (2003), rules out the existence of defiers at any value of covariates.

Assumption SM (Strong monotonicity). P [D(1) ≥ D(0) | X] = 1 a.s.

In many applications, Assumption SM may be too restrictive (cf. de Chaisemartin, 2017; Dahl,
Huber, and Mellace, 2023). A testable implication of Assumption SM is that ω(x), the conditional
first-stage slope coefficient, is always non-negative. If this is formally rejected or otherwise im-
plausible, an alternative assumption is necessary to obtain point identification. One possibility is to
restrict treatment effect heterogeneity, as discussed by Heckman and Vytlacil (2005) and Mogstad
and Torgovitsky (2018), in which case we will be able to identify the average treatment effect rather
than the unconditional LATE parameter. Another possibility is to replace Assumption SM with a
weaker assumption that postulates the existence of compliers but no defiers at some covariate val-
ues and the existence of defiers but no compliers elsewhere. While the relative appeal of these two
assumptions is context dependent, I will focus on the latter in what follows.

Assumption WM (Weak monotonicity). There exists a subset of the support of X such that
P [D(1) ≥ D(0) | X] = 1 on it and P [D(1) ≤ D(0) | X] = 1 on its complement.

To understand the difference between Assumptions SM and WM, consider a recent paper by
Deryugina et al. (2019), who estimate the health effects of air pollution using an instrument based
on changes in local wind direction. Imagine a pollution source located to the east of a particular
city. When the wind also blows from the east, the city will experience relatively high levels of pol-
lution; the opposite is true when the wind blows from the west. Assumption SM would require that
every city reacts to a specific wind direction (say, east) in the same way (say, high pollution). This,
however, is known not to be true. Deryugina et al. (2019) explain, for example, that air pollution
is relatively high in San Francisco when the wind blows from the southeast, while the same is true
in Boston when the wind blows from the southwest. Indeed, Assumption WM would allow for the
possibility that different locations react to a specific wind direction in different ways.

Importantly, Assumption WM, together with Assumption IV, is sufficient to identify τ(x) and
π(x). Before stating the relevant lemma, it is useful to define an auxiliary function

c(x) = sgn
(
P [D(1) ≥ D(0) | X = x] − P [D(1) ≤ D(0) | X = x]

)
, (11)

where sgn(·) is the sign function. Clearly, c(x) equals 1 if there are only compliers at X = x and −1
if there are only defiers at X = x.
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The following lemma summarizes identification of the conditional LATE parameter and the
conditional proportion of individuals whose treatment status is affected by the instrument.

Lemma 2.1.

(i) Under Assumptions IV and SM, τ(x) = β(x) and π(x) = ω(x).

(ii) Under Assumptions IV and WM, τ(x) = β(x) and π(x) = |ω(x)| = c(x) · ω(x).

Lemma 2.1 consists of well-known results and straightforward extensions of these results, and as
such it is stated without proof (cf. Angrist et al., 1996; Angrist and Pischke, 2009). Note that
strong monotonicity implies weak monotonicity, which means that every statement that is true
under weak monotonicity is also true under strong monotonicity as a special case. I will follow
this logic in the statement of the theoretical results below.

3 Negative Weights in Linear IV

3.1 Angrist and Imbens (1995), Revisited

Let us begin by revisiting AI’s representation of the 2SLS estimand. Recall that AI study a special
case of the model in equation (1) where all covariates are binary and represent membership in dis-
joint groups or strata. In this case, each of the original covariates needs to be discrete or discretized,
which means that the population can be divided into K groups, where K denotes the number of
possible combinations of values of these variables. (For example, with six binary variables, we
have K = 26 = 64.) Let G ∈ {1, . . . ,K} denote group membership and Gk = 1[G = k] denote the
resulting group indicators. AI consider a model where original covariates are replaced with these
group indicators, X = (1,G1, . . . ,GK−1), while reduced-form and first-stage regressions include a
full set of interactions between X and Z; that is, ZC = (Z,ZG1, . . . ,ZGK−1). The following lemma
restates AI’s and Kolesár (2013)’s interpretation of the 2SLS estimand in this context.

Lemma 3.1 (Angrist and Imbens, 1995; Kolesár, 2013). Suppose that X = (1,G1, . . . ,GK−1) and

ZC = (Z,ZG1, . . . ,ZGK−1). Suppose further that Assumptions IV and WM hold. Then

β2SLS =
E

[
σ2(X) · τ(X)

]
E

[
σ2(X)

] ,

where σ2(X) = Var [E [D | X,Z] | X] = E
[
(E [D | X,Z] − E [D | X])2

| X
]
.

Lemma 3.1 establishes that the 2SLS estimand in AI’s interacted specification is a convex com-
bination of conditional LATEs, with weights equal to the conditional variance of the first stage.
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This result is due to AI and has usually been interpreted as requiring that the existence of defiers
is completely ruled out (e.g., Angrist and Pischke, 2009). Kolesár (2013) demonstrates that it also
holds under weak monotonicity.

It may not be immediately obvious how the 2SLS weights in Lemma 3.1 differ from the “de-
sired” weights in equation (8). The following result facilitates this comparison.

Theorem 3.2. Suppose that X = (1,G1, . . . ,GK−1) and ZC = (Z,ZG1, . . . ,ZGK−1). Suppose further

that Assumptions IV and WM hold. Then

β2SLS =
E

[
[π(X)]2 · Var [Z | X] · τ(X)

]
E

[
[π(X)]2 · Var [Z | X]

] .

Theorem 3.2 shows that the 2SLS estimand in AI’s interacted specification is a convex combination
of conditional LATEs, with weights equal to the product of the squared conditional proportion of
compliers or defiers and the conditional variance of Z.3 Since the “desired” weights in equation (8)
consist only of the conditional proportion of compliers or defiers, AI’s specification overweights
the effects in groups with strong first stages and with large variances of Z. Importantly, this result
does not require strong monotonicity; weak monotonicity is sufficient.

Remark 3.1. Although Lemma 3.1 and Theorem 3.2 show that AI’s specification can avoid neg-
ative weights, practitioners rarely use multiple interacted instruments. In a survey of recent appli-
cations of IV methods, Blandhol et al. (2022) determine that only 1 out of 99 applicable papers
has used AI’s specification. Specifications with many interactions between the instrument(s) and
covariates were more common in earlier work using IV methods (e.g., Angrist, 1990; Angrist and
Krueger, 1991) but have since become rare, likely out of concern for the many instrument bias.4

3.2 Usual Application of IV

Remark 3.1 suggests that Theorem 3.2 cannot be used directly to interpret most empirical studies
because modern applications of IV methods avoid using many interacted instruments. A similar
point is made by Angrist and Pischke (2009, p. 178), who maintain, however, that an indirect

3See also Walters (2018) for a related remark that focuses on “descriptive” estimands and does not use the LATE
framework for interpretation.

4Indeed, Bound, Jaeger, and Baker (1995) write that their results “indicate that the common practice of adding
interaction terms as excluded instruments may exacerbate the problem” (emphasis mine). On the other hand, some
recent applications of the wind instrument (Deryugina et al., 2019; Bondy, Roth, and Sager, 2020) and the “judges
design” (Aizer and Doyle, 2015; Mueller-Smith, 2015; Stevenson, 2018) interact the instrument with selected covari-
ates, which is similar in spirit to AI’s specification. However, quantitatively speaking, this is still very rare in practice:
in a sample of 122 papers considered by Mogstad et al. (2021), only seven include specifications with some covariate
interactions with a baseline instrument.
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argument in Abadie (2003) implies that “some kind of covariate-averaged LATE” is estimated in
noninteracted specifications as well. In what follows, I show that Angrist and Pischke (2009)’s
assertion would be false under weak monotonicity. The claim is true under strong monotonicity,
which I will be able to demonstrate directly, deriving the exact form of “covariate-averaged LATE”
that linear IV estimates. I also revisit Abadie (2003)’s indirect argument later on.

To save space, I combine two extensions of AI’s analysis in what follows. On the one hand,
I am interested in the interpretation of the IV estimand when we retain AI’s restriction that the
model for covariates is saturated but no longer use the interacted instruments. This analysis does
not require any additional assumptions. On the other hand, I am also interested in the interpretation
of the IV estimand in nonsaturated specifications. This analysis proceeds under the assumption that
the instrument propensity score, defined as

e(X) = E [Z | X] , (12)

is linear in X. This assumption is standard and has been used by Kolesár (2013), Lochner and
Moretti (2015), Evdokimov and Kolesár (2019), and Ishimaru (2024), among others.

Assumption PS (Instrument propensity score). e(X) = Xα.

Assumption PS holds automatically when Z is randomized, and also when all covariates are dis-
crete and the model for covariates is saturated. (This is why the statement of the theoretical results
below only invokes Assumption PS and does not separately mention saturated specifications.) As-
sumption PS may also provide a good approximation to e(X) in other situations, especially when X

includes powers and cross-products of the original covariates. This assumption is critical. Bland-
hol et al. (2022) determine that Assumption PS is necessary for the IV and 2SLS estimands to
maintain their interpretation as a convex combination of conditional LATEs.

Let us first consider the case of weak monotonicity. The following result shows that the inter-
pretation of the linear IV estimand is very unappealing in this context.

Theorem 3.3. Suppose that Assumptions IV, WM, and PS hold. Then

βIV =
E [c(X) · π(X) · Var [Z | X] · τ(X)]

E [c(X) · π(X) · Var [Z | X]]
.

Theorem 3.3 provides a new representation of the IV estimand in the standard specification, i.e. one
that, perhaps incorrectly, restricts the effects of the instrument in the reduced-form and first-stage
regressions to be homogeneous across covariate values. Unlike in AI’s specification, the estimand
in the standard specification is not necessarily a convex combination of conditional LATEs. This
is because c(x) takes the value −1 for every value of covariates where there exist defiers but no
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compliers, and hence the corresponding weights in Theorem 3.3 are negative as well. It follows
that, when IV is applied in the usual way, the estimand may no longer be interpretable as a causal
effect. It is even possible that this parameter may be negative (positive) when treatment effects are
positive (negative) for everyone in the population.

The following result demonstrates that this problem disappears when we impose the strong
version of monotonicity.

Corollary 3.4. Suppose that Assumptions IV, SM, and PS hold. Then

βIV =
E [π(X) · Var [Z | X] · τ(X)]

E [π(X) · Var [Z | X]]
.

Corollary 3.4 provides a direct argument for Angrist and Pischke (2009)’s assertion that the stan-
dard specification of IV recovers a convex combination of conditional LATEs. As noted previously,
however, this statement is no longer true under weak monotonicity. If strong monotonicity holds,
then the weights in Corollary 3.4 may be more desirable than those in AI’s specification. Indeed,
a comparison of Corollary 3.4 and equation (8) shows that the standard specification, like AI’s
specification, overweights the effects in groups with large variances of Z but not, unlike the latter,
in groups with strong first stages.5

Remark 3.2. Abadie (2003) shows that, under Assumptions IV, SM, and PS, the IV estimand is
equivalent to the coefficient on D in the linear projection of Y on D and X among compliers. In
other words, IV is analogous to ordinary least squares (OLS), with the exception of its ability to
implicitly condition the analysis on the (latent) subpopulation of compliers. Corollary 3.4 provides
another argument that “IV is like OLS.” Indeed, as shown by Angrist (1998), the only difference
between the OLS estimand and the ATE is in the dependence of the OLS weights on Var [D | X].
Similarly, Corollary 3.4 shows that, under strong monotonicity, the only difference between the
IV estimand and the LATE is in the dependence of the IV weights on Var [Z | X]. However, this
analogy between OLS and IV may be problematic for IV given the undesirable properties of the
OLS estimand under treatment effect heterogeneity (cf. Słoczyński, 2022).

Remark 3.3. Bond, White, and Walker (2007) discuss the interpretation of interacted and nonin-
teracted specifications in randomized experiments with noncompliance in which the existence of
defiers is completely ruled out. In this case, the standard specification of IV recovers the uncon-
ditional LATE parameter but the interacted specification does not.6 This is a special case of the

5To be clear, both specifications attach a greater weight to conditional LATEs in groups with strong first stages, as
required by equation (8). But AI’s specification places even more weight on such conditional LATEs than is necessary
to recover the unconditional LATE parameter.

6Instead, the interacted specification recovers a convex combination of conditional LATEs, which is generally
different from the unconditional LATE parameter. A similar point about models with fully independent instruments
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difference between Theorem 3.2 and Corollary 3.4 where Var [Z | X] is constant. However, Theo-
rem 3.3 makes it clear that under weak monotonicity the standard specification no longer recovers
the unconditional LATE parameter or even a convex combination of conditional LATEs.

Remark 3.4. Theorem 3.3 and Corollary 3.4 are also related to Theorem 1 in Kolesár (2013),
which provides a common representation of any two-step instrumental variables estimand in the
case of a binary D, a discrete Z, and under conditions similar to Assumptions IV, WM, and PS.
To present this result, it is necessary to introduce some additional notation. Let P = E [D | Z, X],
PL = L [D | ZG, X], and P̃L = PL − L [D | X], where L[·] is the linear projection and ZG = zG(X,Z)
is the vector of constructed instruments, which may include (some) interactions between X and Z.
Also, let Px denote the support of P conditional on X = x and Jx denote the number of support
points, with Px =

{
p1,x < . . . < pJx,x

}
. Then, Kolesár (2013) shows that

βTSIV =

∫ Jx−1∑
j=1

θ j(x)∫ ∑Jx−1
j=1 θ j(x) dFX(x)

τ(p j,x; x) dFX(x), (13)

where βTSIV is any two-step instrumental variables estimand (e.g., 2SLS) which uses ZG as in-
struments, θ j(x) =

(
p j+1,x − p j,x

)
· P

[
P > p j,x | X = x

]
· E

[
P̃L | X = x, P > p j,x

]
, and τ(p j,x; x) =

E[Y | P=p j+1,x, X=x] − E[Y | P=p j,x, X=x]
p j+1,x − p j,x

is the conditional LATE based on two adjacent elements of Px.
Kolesár (2013)’s result is generic in the sense that it applies to any given vector of instruments
ZG = zG(X,Z). At the same time, Theorem 3.3 is specific to the IV estimand. However, its focus
on that particular specification simplifies the result, making it more transparent and easier to inter-
pret than equation (13).7 In Appendix A, I also present an alternative proof of Theorem 3.3, which
uses Kolesár (2013)’s representation of βTSIV.

Remark 3.5. A testable implication of strong monotonicity is that ω(x), the conditional first-stage
slope coefficient, is always non-negative. In a saturated specification with X = (1,G1, . . . ,GK−1),
it is straightforward to construct a formal test based on this observation.8 If we define

ω =
(
E [D | Z = 1,G = k] − E [D | Z = 0,G = k]

)K

k=1
, (14)

then the null hypothesis can be written as

H0 : (−1) · ω ≤ 0 (15)

is made by Huntington-Klein (2020), who also revisits the link between the existence of defiers and negative weights
in this context (cf. Imbens and Angrist, 1994; de Chaisemartin, 2017; Dahl et al., 2023) and recommends interacted
specifications.

7Using equation (13) to determine whether a given specification rules out the incidence of negative weights re-
quires verifying the condition P

[
θ j(X) ≥ 0

]
= 1 on a case-by-case basis.

8See also Semenova (2023) for an analogous test in the context of endogenous sample selection.
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and the test statistic as
T = max

1≤k≤K

(−1) · ω̂k

σ̂ω̂k

. (16)

One possible choice of critical values for this test statistic are the one-step self-normalized criti-
cal values of Chernozhukov, Chetverikov, and Kato (2019). Another is based on the Bonferroni
procedure, which requires, however, that K is much smaller than the sample size.

Remark 3.6. Suppose we are interested in the estimand of Corollary 3.4, but we are only willing
to assume weak monotonicity. If ω(x) were known, we could define a new, “reordered” instrument
as ZR = 1[ω(X) > 0] · Z + 1[ω(X) < 0] · (1 − Z) and subsequently use it in a noninteracted
specification. In Appendix A, I show that this procedure would recover the estimand of interest.
In practice, however, ω(x) is unknown and would need to be estimated. I leave the study of the
properties of the resulting reordered IV estimator to future work.

3.3 Finite Sample Considerations

Given the theoretical results in Sections 3.1 and 3.2, it seems reasonable to consider AI’s interacted
specification whenever weak monotonicity is plausible but strong monotonicity is not. However,
this approach has some limitations in finite samples: it requires dividing the sample into K groups,
and when K is sufficiently large relative to the sample size, some groups will be small. With many
groups and instruments, this situation leads to bias, which results from overfitting the first stage. In
other words, the first-stage fitted values pick up the noise, not just the signal, and a large amount
of noise, particularly likely with many small groups, translates to poor estimates of the first stage
and bias in the second stage.

This phenomenon, known as the “many instrument” bias, has been extensively studied in the
econometrics literature. Recent surveys include Anatolyev (2019) and Mikusheva and Sun (2024).9

In the remainder of this section, I first review several solutions to this problem, which offer finite
sample improvements over 2SLS when estimating specifications with many instruments (e.g., AI’s
specification). Then, I review a recent pretest designed to evaluate whether, in a given dataset, the
instruments are jointly strong enough to ensure consistency. I conclude with a simulation study.

3.3.1 Estimation with Many Instruments

The problem of the many instrument bias is usually studied using the asymptotic sequence of
Kunitomo (1980), Morimune (1983), and Bekker (1994), which allows the number of instruments,
K, to increase in proportion with the sample size, N. In the context of AI’s interacted specification,

9The classic literature on many instruments has focused on the homogeneous effects model, but I interpret its
results through the lens of the framework in Section 2.
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fixing the ratio of K to N does not allow the group sizes to grow when the sample size grows,
which reproduces the practical problem of small groups.

Under this asymptotic sequence, 2SLS is inconsistent unless the concentration parameter, a
measure of instrument strength, grows faster than the number of instruments. The classic alter-
natives include the limited information maximum likelihood (LIML) estimator of Anderson and
Rubin (1949) and the bias-corrected two-stage least squares (B2SLS) estimator of Nagar (1959),
both of which are consistent under homoskedasticity when the concentration parameter grows
faster than the square root of the number of instruments (Chao and Swanson, 2005). However, ho-
moskedasticity of first-stage errors is impossible when the treatment is binary. Under heteroskedas-
ticity, LIML and B2SLS require the same (stronger) condition as 2SLS (Chao et al., 2012).

Under heteroskedasticity, the weaker condition that the concentration parameter grows faster
than the square root of the number of instruments is sufficient for the consistency of the jackknife
IV estimator (JIVE) of Angrist, Imbens, and Krueger (1999), as also shown by Chao et al. (2012).
The basic idea underlying jackknife-type estimators is that using a “leave-one-out” predictor of the
treatment—effectively a separate first stage for each unit—will reduce the noise and bias.

At the same time, however, most of the estimators discussed so far are inconsistent under the
asymptotic sequence that allows the number of covariates, alongside the number of instruments,
to increase in proportion with the sample size. This is potentially a major limitation because,
in AI’s specification, the number of covariates and the number of instruments are the same and
equal to the number of groups. Still, several modifications to JIVE and B2SLS are robust to
many instruments and many covariates, including the improved jackknife IV estimator (IJIVE) of
Ackerberg and Devereux (2009), the modified bias-corrected two-stage least squares (MB2SLS)
estimator of Anatolyev (2013), the unbiased jackknife IV estimator (UJIVE) of Kolesár (2013),
and three jackknife-type estimators of Chao et al. (2023), referred to as the fixed effect jackknife
IV (FEJIV) estimator, the fixed effect limited information maximum likelihood (FELIM) estimator,
and the fixed effect Fuller (1977) (FEFUL) estimator. Although the performance of LIML is not
additionally affected by many covariates (Anatolyev, 2013), both LIML and MB2SLS rely on the
homoskedasticity assumption. Furthermore, LIML does not even share the estimand with two-step
IV estimators, such as 2SLS, MB2SLS, JIVE, IJIVE, UJIVE, and FEJIV, making it inappropriate
in settings with treatment effect heterogeneity (Kolesár, 2013). FELIM and FEFUL do not belong
to the class of two-step IV estimators either. Finally, Chao et al. (2023) discuss the limitations of
IJIVE and, to a lesser extent, UJIVE, making FEJIV the likely estimator of choice.

3.3.2 Weak Identification

Specifications with many instruments require that they are sufficiently strong as a group, although
they can be individually weak or even irrelevant (cf. Anatolyev, 2019). In the context of AI’s

14



specification, the original instrument can be weak in some groups as long as it is sufficiently strong
in others. But how strong is strong enough?

Mikusheva and Sun (2022) study weak identification in linear models with many instruments,
which is a situation where the concentration parameter divided by the square root of the number
of instruments remains bounded as the sample size grows. They also develop a pretest for this
phenomenon to evaluate whether identification is strong in a given dataset. (Their test statistic
F̃ should be compared to a cutoff of 4.14.) Under the null of weak identification, no consistent
estimator exists, and inference can instead be based on a jackknifed version of the AR test statistic.
When the pretest rejects, Mikusheva and Sun (2022) recommend the jackknife IV estimator, which
is consistent under the alternative (Chao et al., 2012).

3.3.3 Simulations

In what follows, I study the finite sample performance of several two-step IV estimators of AI’s
specification, with a focus on settings with many small groups, treatment effect heterogeneity, and
violations of Assumption SM. I adapt the data-generating process from Blandhol et al. (2022),
which originally assumed homogeneous treatment effects and no monotonicity violations. As we
will see, these restrictions are responsible for Blandhol et al. (2022)’s conclusion that the usual
application of IV is easier to estimate without bias than the interacted specification.

In the baseline data-generating process, as in Blandhol et al. (2022), I draw X uniformly from
a Halton sequence X on [0, 1], subsequently drawing Z, D(Z), and Y(D) as

P [Z = 1 | X] = 0.119 + 1.785X − 1.534X2 + 0.597X3, (17)

D(Z) = 1[Φ(V) ≤ p(Z)], (18)

Y(D) = log
(
129.7 + 1247.7X − 2149X2 + 1515.7X3

)
+ 1.2D + U, (19)

where (U,V) are standard multivariate normal with correlation 0.527, drawn independently of
(X,Z). I also set |X| = 250, p(0) = P [D = 1 | Z = 0] = 0.22, and p(1) = P [D = 1 | Z = 1] = 0.29.
In this setting, treatment effects are homogeneous and equal to 1.2. Strong monotonicity is satisfied
even though the instrument is relatively weak, with the proportion of compliers independent of X

and equal to p(1) − p(0) = 0.07.
In subsequent modifications of this data-generating process, I introduce treatment effect het-

erogeneity by specifying Y(1) and Y(0) as

Y(1) = log
(
129.7 + 1247.7X − 2149X2 + 1515.7X3

)
+ 1.2 + U, (20)

Y(0) = log
(
1 · 129.7 + 2 · 1247.7X − 3 · 2149X2 + 4 · 1515.7X3

)
+ U, (21)
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Table 1: Simulation Results for K = 250, “Weak” IV, and No Monotonicity Violations

N = 3,000 N = 10,000 N = 50,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE Bias Median
Bias MSE

OLS –0.735 –0.735 1.080 –0.736 –0.735 1.303 –0.735 –0.735 3.457
IV 0.095 0.001 0.941 0.013 –0.002 0.225 0.001 –0.001 0.106

2SLS –0.698 –0.701 1.000 –0.635 –0.636 1.000 –0.387 –0.387 1.000
MB2SLS –59.10 –0.966 6.4e+06 4.546 –0.025 7.1e+04 0.053 0.036 0.313

JIVE –0.803 –0.805 1.355 –0.901 –0.892 2.029 –9.473 –3.842 1.5e+05
IJIVE 0.385 –0.430 629.8 –0.068 –0.112 37.97 0.013 –0.004 0.256
UJIVE –1.540 –0.482 516.7 1.073 –0.062 4.8e+03 0.017 0.000 0.261
FEJIV –1.396 –0.512 3.5e+03 0.395 –0.027 132.0 0.017 0.000 0.261

B. Pretest for Weak Identification
Average F̃ 1.83 2.27 10.37

q0.05 –0.07 0.12 7.54
q0.95 3.83 4.40 13.43

Notes: “OLS” is the OLS estimator in the regression of the outcome on the treatment indicator and group indicators. “IV” is the IV estimator
in the noninteracted specification. The remaining estimators are based on the interacted specification. JIVE, IJIVE, and UJIVE are computed
after dropping all groups with fewer than two observations in either (X,Z) combination. FEJIV is computed after dropping all groups with fewer
than three observations in either (X,Z) combination. The pretest for weak identification follows Mikusheva and Sun (2022); see also the Stata
implementation in Sun (2023). Bias and median bias are reported as the proportion of the target parameter. MSE is normalized by the MSE of
2SLS. Results are based on 1,000 replications. Pretest results are based on 250 replications.

while also allowing for violations of strong (but not weak) monotonicity. This is accomplished
by switching the values of p(0) and p(1) for some groups. Specifically, to generate what I refer
to as “moderate” monotonicity violations, I reverse the values of p(0) and p(1) if X > 0.75. For
“large” monotonicity violations, the threshold value of X is 0.5. I also consider a setting with
“weak cells,” that is, values of X where the proportion of compliers and defiers is zero. Here, I set
p(0) = p(1) = 0.22 if 1/3 < X < 2/3 and reverse the original values of p(0) and p(1) if X > 2/3.

Two final modifications involve the number and relative sizes of groups and the instrument
strength. So far, the groups were equal sized. To reproduce the likely scenario that some groups
are large while others are small, I also consider a setting with |X| = 20, but where X is not drawn
uniformly. Specifically, I set P [G = k] to be proportional to 1.3k, making the largest group 1.319

times larger than the smallest. As in Blandhol et al. (2022), I also consider a scenario where the
instrument is stronger than the “weak” case above, with 0.52 replacing 0.29 as the larger value of
p(Z) whenever p(0) , p(1) conditional on X. This sets the conditional proportion of compliers or
defiers equal to 0.3, except in the “weak cells” design, where it is either 0.3 or 0.

The total number of simulation designs is sixteen, with |X| = 20 or |X| = 250, two levels of
instrument strength (“weak” or “strong”), and four scenarios of violations of strong monotonicity,
referred to as no violations, moderate violations, large violations, and violations with weak cells.
Treatment effects are homogeneous when strong monotonicity holds and heterogeneous otherwise.
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Table 2: Simulation Results for K = 250, “Weak” IV, and Moderate Monotonicity Violations

N = 3,000 N = 10,000 N = 50,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE Bias Median
Bias MSE

OLS –1.159 –1.158 1.168 –1.160 –1.159 1.316 –1.160 –1.159 3.357
IV 0.543 0.181 3.418 0.219 0.176 0.440 0.180 0.175 0.239

2SLS –1.059 –1.056 1.000 –0.999 –0.997 1.000 –0.621 –0.623 1.000
MB2SLS –2.382 –1.589 452.1 0.174 –0.113 140.2 –0.019 –0.037 0.213

JIVE –1.150 –1.152 1.215 –1.403 –1.391 1.997 –9.380 –5.865 6.9e+04
IJIVE –2.173 –0.672 1.7e+03 4.456 –0.161 1.8e+04 0.020 0.001 0.229
UJIVE –1.436 –0.793 2.1e+03 –0.735 –0.076 812.2 0.028 0.007 0.234
FEJIV –0.991 –0.715 895.6 0.807 –0.072 261.1 0.028 0.007 0.234

B. Pretest for Weak Identification
Average F̃ 1.92 2.30 10.08

q0.05 –0.01 0.27 7.48
q0.95 4.04 4.73 12.87

Notes: “OLS” is the OLS estimator in the regression of the outcome on the treatment indicator and group indicators. “IV” is the IV estimator
in the noninteracted specification. The remaining estimators are based on the interacted specification. JIVE, IJIVE, and UJIVE are computed
after dropping all groups with fewer than two observations in either (X,Z) combination. FEJIV is computed after dropping all groups with fewer
than three observations in either (X,Z) combination. The pretest for weak identification follows Mikusheva and Sun (2022); see also the Stata
implementation in Sun (2023). Bias and median bias are reported as the proportion of the target parameter. MSE is normalized by the MSE of
2SLS. Results are based on 1,000 replications. Pretest results are based on 250 replications.

The target parameter is the estimand in Theorem 3.2, which is, except in the “weak cells” design,
equal to that in Corollary 3.4, making monotonicity violations the only reason why the estimands
of the interacted and noninteracted specifications may be different. I consider two sample sizes,
N = 3,000 and N = 10,000, when |X| = 20, and additionally N = 50,000 when |X| = 250.

Table 1 reports simulation results for a number of estimators in the “weak” IV case with 250
groups and no monotonicity violations. The first three columns, setting N = 3,000, correspond to
the baseline results in Blandhol et al. (2022). Even though I consider a larger number of estimators
than Blandhol et al. (2022), I reach the same conclusion: all estimators are severely biased, with
the only exception of IV in the noninteracted specification, whose bias is less than 10% and median
bias is practically zero. However, panel B of Table 1 reveals that this conclusion is predictable:
the average value of Mikusheva and Sun (2022)’s test statistic, F̃, is 1.83, well below the cutoff

of 4.14, which means that consistent estimation of the interacted specification is impossible. The
remaining columns report simulation results for N = 10,000 and N = 50,000. Here, the strength
of identification gradually increases, with the average value of F̃ exceeding 10 when N = 50,000.
Indeed, when this is the case, the best-performing estimators of AI’s specification—IJIVE, UJIVE,
and FEJIV—are practically unbiased, in line with the results in Mikusheva and Sun (2022).

Table 2 introduces moderate monotonicity violations. With N = 3,000, the average value
of F̃ is again below 2. Now, however, every estimator is severely biased, including IV in the
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Table 3: Simulation Results for K = 250, “Weak” IV, and Large Monotonicity Violations

N = 3,000 N = 10,000 N = 50,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE Bias Median
Bias MSE

OLS –1.165 –1.166 1.187 –1.166 –1.166 1.329 –1.166 –1.166 3.347
IV 0.839 –0.252 723.7 1.498 0.459 252.2 0.670 0.547 3.322

2SLS –1.056 –1.057 1.000 –1.001 –1.006 1.000 –0.627 –0.624 1.000
MB2SLS 0.073 –0.751 625.9 –0.052 –0.291 15.78 –0.070 –0.082 0.186

JIVE –1.154 –1.151 1.239 –1.413 –1.399 2.025 –2.757 –5.762 1.6e+04
IJIVE –1.341 –0.753 456.7 0.085 –0.212 158.8 0.018 0.004 0.216
UJIVE –8.712 –0.842 7.0e+04 0.011 –0.113 99.13 0.026 0.010 0.221
FEJIV –1.745 –0.686 6.3e+03 1.626 –0.057 721.5 0.026 0.010 0.221

B. Pretest for Weak Identification
Average F̃ 2.01 2.24 9.74

q0.05 –0.06 0.37 7.15
q0.95 4.30 4.41 12.41

Notes: “OLS” is the OLS estimator in the regression of the outcome on the treatment indicator and group indicators. “IV” is the IV estimator
in the noninteracted specification. The remaining estimators are based on the interacted specification. JIVE, IJIVE, and UJIVE are computed
after dropping all groups with fewer than two observations in either (X,Z) combination. FEJIV is computed after dropping all groups with fewer
than three observations in either (X,Z) combination. The pretest for weak identification follows Mikusheva and Sun (2022); see also the Stata
implementation in Sun (2023). Bias and median bias are reported as the proportion of the target parameter. MSE is normalized by the MSE of
2SLS. Results are based on 1,000 replications. Pretest results are based on 250 replications.

noninteracted specification. (Estimation of this specification is biased because of monotonicity
violations. Estimation of the interacted specification is biased because of insufficient instrument
strength.) With larger sample sizes, N = 10,000 and N = 50,000, identification gets stronger.
Specifically, when N = 50,000, the average value of F̃ again exceeds 10, and IJIVE, UJIVE,
and FEJIV perform very well. IV estimation of the noninteracted specification remains biased;
however, it is competitive with the best-performing estimators in terms of MSE.

Tables 3 and 4 consider large monotonicity violations and “weak cells.” It remains the case that
IJIVE, UJIVE, and FEJIV are nearly unbiased whenever the average value of F̃ is large enough.
This includes the “weak cells” design in Table 4, which underscores the notion that the instrument
can be weak in some groups as long as it is sufficiently strong in others.10 On the other hand, unlike
in Table 2, IV estimation of the noninteracted specification is not only biased in Tables 3 and 4, but
also noisy, which leads to very high values of MSE.

The remaining simulation results, for “weak” IV with |X| = 20 and for “strong” IV with both
values of |X|, are reported in Tables B.1–B.12 in Appendix B. The bottom line is still that Miku-
sheva and Sun (2022)’s pretest does a great job differentiating between cases where IJIVE, UJIVE,

10Intuitively, if π(x) = 0 when X = x, τ(x) is not identified. However, because τLATE =
E[π(X)·τ(X)]

E[π(X)] , the weight
on τ(x) in τLATE would have been zero anyway, and analogously for the estimands in Theorem 3.2, Theorem 3.3, and
Corollary 3.4. That is, as long as the overall instrument strength is sufficient (cf. Mikusheva and Sun, 2022), it does not
matter that some conditional LATEs cannot be well estimated due to a conditional-on-X weak IV problem, because
those conditional LATEs are irrelevant for the target estimand.
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Table 4: Simulation Results for K = 250, “Weak” IV, and Monotonicity Violations with Weak Cells

N = 3,000 N = 10,000 N = 50,000

A. Estimator Performance Bias Median
Bias MSE Bias Median

Bias MSE Bias Median
Bias MSE

OLS –1.196 –1.195 1.136 –1.193 –1.194 1.185 –1.194 –1.194 2.269
IV 0.945 –0.310 975.8 0.053 0.380 1.2e+03 0.805 0.646 3.480

2SLS –1.108 –1.111 1.000 –1.082 –1.080 1.000 –0.779 –0.784 1.000
MB2SLS –6.127 –1.278 1.2e+04 0.183 –0.479 246.3 –0.109 –0.132 0.308

JIVE –1.129 –1.122 1.084 –1.315 –1.319 1.493 –3.229 –2.828 23.50
IJIVE –11.17 –0.900 2.1e+05 9.651 –0.480 5.2e+04 0.026 –0.015 0.396
UJIVE –0.814 –1.063 3.3e+03 3.604 –0.411 1.1e+04 0.039 –0.001 0.409
FEJIV 3.766 –0.778 2.3e+04 –6.777 –0.476 1.6e+04 0.039 0.001 0.408

B. Pretest for Weak Identification
Average F̃ 1.73 1.48 6.18

q0.05 0.03 –0.58 4.10
q0.95 3.57 3.54 8.52

Notes: “OLS” is the OLS estimator in the regression of the outcome on the treatment indicator and group indicators. “IV” is the IV estimator
in the noninteracted specification. The remaining estimators are based on the interacted specification. JIVE, IJIVE, and UJIVE are computed
after dropping all groups with fewer than two observations in either (X,Z) combination. FEJIV is computed after dropping all groups with fewer
than three observations in either (X,Z) combination. The pretest for weak identification follows Mikusheva and Sun (2022); see also the Stata
implementation in Sun (2023). Bias and median bias are reported as the proportion of the target parameter. MSE is normalized by the MSE of
2SLS. Results are based on 1,000 replications. Pretest results are based on 250 replications.

and FEJIV perform well or very well, and cases where all estimators of the interacted specifica-
tion perform badly. Roughly speaking, values of F̃ exceeding the recommended cutoff of 4.14 are
associated with low bias, even when, with |X| = 250 and N = 3,000, there are only 12 units in
each group; values of F̃ exceeding 10–15 are associated with negligible or no bias, at least in the
data-generating process under consideration.

Other estimators are clearly not competitive with IJIVE, UJIVE, and FEJIV. When there are
violations of monotonicity, the usual application of IV is biased and often unstable. 2SLS estima-
tion of the interacted specification is generally biased, as expected. MB2SLS is usually dominated
by IJIVE, UJIVE, and FEJIV, especially on bias. JIVE is generally biased and unstable.

4 Empirical Applications

The results so far underscore the importance of using the interacted specification when weak mono-
tonicity is plausible but strong monotonicity is not. In this section I present evidence of violations
of strong monotonicity and first-stage homogeneity in a sample of recent applications of IV meth-
ods. Then, I revisit a study of the effects of pretrial detention on case outcomes in Philadelphia,
where violations of strong monotonicity are particularly evident (Stevenson, 2018).
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4.1 Review of Applications of Instrumental Variables

In what follows, I use a sample of 1,309 instrumental variables regressions previously analyzed
by Young (2022), which corresponds to the universe of IV estimates reported in the main text of
30 papers published in journals of the American Economic Association between 2006 and 2015.11

After dropping specifications with multiple instruments, without additional covariates, or based on
panel data, I obtain my final sample of 988 regressions in 25 papers.12 The number of regressions
per paper is highly uneven in this sample, with the mean equal to 988/25 = 39.52 and the quartiles
equal to 8, 14, and 40. The list of papers under consideration is provided in Appendix C.

Given the inclusion criteria above, every specification in my sample is based on a linear first-
stage regression of D on Z and X, without any interactions between Z and X. In my first exercise,
I implicitly include these interactions by means of separate regressions of D on X given Z = 1
and Z = 0.13 This simple approach allows me to estimate the conditional first stage at every value
of X as the difference in conditional means, ω̂(x) = Ê [D | Z = 1, X = x] − Ê [D | Z = 0, X = x].
Subsequently, I report the fraction of these estimates that are opposite in sign (“negative”) to the
estimate in the original first stage, which is equivalent to the fraction of observations with negative
weights in the usual application of IV (cf. Theorem 3.3). This is analogous to the recommenda-
tion of de Chaisemartin and D’Haultfœuille (2020) to report the fraction of units with negative
weights in two-way fixed effects regressions. Similarly, Semenova (2023) reports the fraction of
observations with negative predictions in a sample selection context related to mine.

Panel A of Table 5 indicates that negative first stages are a common occurrence in recent appli-
cations of IV. The average fraction of observations with a negative first stage is 21.8% when using
the linear probability model (LPM) to estimate the conditional means in ω(x) and 17.6% when
using the probit model. After weighting by the inverse of the number of applicable regressions
associated with a given paper, these averages increase to 28.5% and 28.0%, respectively, giving
the average of the within-paper averages.

It may be the case that a portion of the estimated negative first stages is due to noise. However,
the regressions in my sample are usually not saturated, which means that the formal test of viola-
tions of monotonicity in Remark 3.5 is not appropriate. Instead, in my second exercise, I explicitly
add interaction terms to each original (linear) first stage and test whether the corresponding coeffi-

11Young (2022)’s goal was to cover the universe of replicable IV applications in this period subject to a small
number of additional inclusion criteria reported in his paper.

12Because Young (2022) only considered papers with replication code in Stata, I define “specifications based
on panel data” as those using Stata’s xtivreg or xtivreg2 commands in the original replication package. The
number of applicable regressions in several papers would decrease substantially if we eliminated not only duplicate
IV regressions—which Young (2022) already did—but also duplicate first stages. However, my preliminary attempt
to do so did not meaningfully change any of the results reported in this section.

13If the original treatment or instrument are not binary, I replace them with indicators for whether these variables
are above their medians. I demonstrate robustness to other binarizations in Tables C.1 and C.2 in Appendix C.
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Table 5: Main Results on Negative First Stages and First-Stage Heterogeneity

A. Negative First Stages LPM Probit
Average Share 0.218 0.176

Weighted Average Share 0.285 0.280

B. First-Stage Heterogeneity LPM Probit
Rejected Papers 22/25 19/21

Average Share of Rejections 0.715 0.749
Notes: Panel A reports summary statistics on the fraction of observations for which
Ê [D | Z = 1, X = x] − Ê [D | Z = 0, X = x] is negative. “Average Share” treats every appli-
cable regression equally. “Weighted Average Share” weights by the inverse of the number of
applicable regressions associated with a given paper. Panel B reports results of Wald tests that
the coefficients on the interaction terms in regressions of D on Z, X, and ZX are jointly equal
to zero. “Rejected Papers” reports the number of papers for which the Bonferroni p-value is
less than or equal to 0.05. “Average Share of Rejections” reports the average share (across
papers) of regressions associated with a given paper for which the corresponding Holm p-value
is less than or equal to 0.05. D and Z are defined as either the original endogenous explanatory
variable and instrument (if they are binary) or indicators for whether these variables are above
their medians, subject to a normalization that Z is always associated with a positive estimated
coefficient in the linear first stage. Sampling weights and clustered standard errors are used in
line with the original papers. Paper-specific results are reported in Table C.3 in Appendix C.

cients are jointly equal to zero. Under the alternative, the true first stage is heterogeneous, which
is a necessary condition for strong monotonicity being false but weak monotonicity being true.

Panel B of Table 5 reports the results of this exercise. Using the Bonferroni procedure to
account for multiple hypothesis testing separately for each paper, I conclude that 22 of 25 papers
have at least one first stage that is heterogeneous. Using the Holm correction, I reject an average of
71.5% of homogeneous first stages per paper. The last column demonstrates that these conclusions
are robust to using the probit instead of the linear probability model (LPM).14

4.2 Reanalysis of Stevenson (2018)

Now, I turn to a reanalysis of Stevenson (2018)’s study of the effects of pretrial detention on
case outcomes. In this application, recently reanalyzed by Cunningham (2021), Coulibaly, Hsu,
Mourifié, and Wan (2024), and Mogstad and Torgovitsky (2024), violations of strong monotonicity
are evident, which I will be able to formally demonstrate.

The data are based on the Philadelphia court records and cover 331,971 arrests between 2006
and 2013. The “treatment” of interest is pretrial detention or, in other words, whether the defendant
was incarcerated in the period between their arrest and disposition; the purpose of such detention
is that they appear in court and do not commit another crime. The empirical question is whether

14The smaller number of papers under consideration when using the probit model reflects convergence and other
estimation problems in the missing specifications.
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Table 6: Eight Judges in Stevenson (2018)

N
Detention

Rate
Judge A 21,523 0.402
Judge B 13,087 0.432
Judge C 56,585 0.395
Judge D 33,690 0.413
Judge E 55,038 0.432
Judge F 41,475 0.413
Judge G 56,301 0.398
Judge H 54,272 0.418

Notes: The data are Stevenson (2018)’s sample of
331,971 arrests in Philadelphia. N is the number of
cases heard by a given judge. “Detention Rate” is the
proportion of cases heard by a given judge such that
the defendant is subsequently detained pretrial.

pretrial detention has a causal effect on case outcomes, such as conviction and incarceration length.
Naturally, pretrial detention is endogenous, and Stevenson (2018)’s identification strategy is based
on random assignment of bail magistrates (judges) to cases. These judges have broad authority to
set bail—the amount required for pretrial release—at a level they choose. Thus, being assigned a
strict judge makes the defendant less likely to be able to pay bail and more likely to be detained.

In Philadelphia, bail hearings usually last one or two minutes, which made it possible for only
eight judges to hear all the cases in Stevenson (2018)’s data. Table 6 reports the number of cases
and the detention rate for each judge. The magistrate I refer to as “Judge C” is the most lenient,
with a relatively low detention rate of 0.395. In what follows—unlike Stevenson (2018), who uses
the full set of judge indicators as instruments—I focus on a single instrument defined as whether
a given case was heard by Judge C. A simple regression of pretrial detention on the “Judge C”
dummy reveals a first stage of –0.0195 with a standard error of 0.0023.

In the present context, strong monotonicity requires that every defendant detained by Judge C
would also have been detained by other judges. However, this condition seems implausible, with
the likely dimensions of monotonicity violations including the offense type (Stevenson, 2018) and
the defendant’s race (Abrams, Bertrand, and Mullainathan, 2012). As in Stevenson (2018), I focus
on the seventeen most common offense types.15 I also consider three racial categories: Black,
White, and other. The offense types are not mutually exclusive, which means that, in principle,
the sample could be divided into 3 · 217 groups based on the defendant’s race and the offense type.

15These include drug possession, drug sale, aggravated assault, robbery, first offense DUI, simple assault, drug
purchase, burglary, shoplifting, theft, marijuana possession, murder, motor vehicle theft, prostitution, third-degree
felony firearm possession, second-degree felony firearm possession, and vandalism.
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However, most of these groups are empty, and I also drop nonempty groups with fewer than three
cases heard by Judge C or not heard by Judge C. As a result, for this specification, the final sample
consists of 431 groups and 327,560 cases.

With such a saturated specification, a formal test of violations of strong monotonicity is straight-
forward, as discussed in Remark 3.5. Given that Judge C is more lenient than others, the overall
first stage is negative—not positive, as assumed previously—and the null hypothesis requires that
all the group-specific first stages are also non-positive. In other words, the null can be written as

H0 : ω ≤ 0 (22)

while the test statistic equals

T = max
1≤k≤K

ω̂k

σ̂ω̂k

. (23)

When I implement this test, I obtain a test statistic of 5.637 and a p-value of 3.7e-06, despite
accounting for multiple hypothesis testing.16 In this application, strong monotonicity is clearly
rejected. Further details on the group-specific impact of Judge C on pretrial detention are provided
in Table 7. Because presenting estimates for 431 groups is impractical, I restrict my attention to
twenty groups with the largest (most positive) and ten groups with the smallest (most negative) z

statistics. For each group, I report the number of cases, the conditional first stage and its standard
error, and the corresponding Holm p-value. At any conventional significance level, we can reject
that the first stage is non-positive in two groups: defendants charged with burglary and vandalism
who are neither Black nor White and Black defendants charged with robbery, simple assault, and
theft. In general, a common feature of many of the groups with the largest z statistics is a combina-
tion of being charged with a property crime (e.g., theft or burglary) and a violent crime (e.g., simple
assault or aggravated assault). In fact, seven of these groups are charged with robbery, which is
simultaneously a violent crime and a crime against property.17 Many of these groups comprise of
defendants who are neither Black nor White. On the other hand, the groups with the smallest z

statistics are universally Black or White, and charged with nonviolent crimes.
Because strong monotonicity is rejected, the noninteracted specification cannot be used to esti-

mate a convex combination of conditional LATEs (cf. Theorem 3.3). However, if weak monotonic-
ity is plausible, the interacted specification will be appropriate, at least as long as the interacted
instruments are sufficiently strong. In the present context, weak monotonicity seems quite sensible.
Given that bail hearings in Philadelphia are extremely short, it is unlikely that more than a handful

16In this application, the approach of Chernozhukov et al. (2019) produces almost identical critical values as the
Bonferroni procedure.

17This is consistent with Stevenson (2018, p. 525)’s account that “[t]he magistrate that is most lenient overall is
actually strictest when it comes to robbery.” However, the test discussed in Remark 3.5 and the results in Table 7 are
otherwise different from the analysis in Stevenson (2018).

23



Table 7: Conditional First Stages and Violations of Strong Monotonicity in Stevenson (2018)

Offense Type Race N ω̂k σ̂ω̂k

Holm
p-value

burglary and vandalism other 200 0.432*** 0.077 3.73e-06

robbery, simple assault, and theft Black 5,033 0.058*** 0.014 0.00869

aggravated assault, robbery, simple assault, and theft other 279 0.215** 0.085 1

first offense DUI and marijuana possession other 135 0.143** 0.057 1

drug possession, robbery, simple assault, and theft Black 93 0.253** 0.104 1

drug purchase White 16 0.333** 0.140 1

drug purchase and marijuana possession Black 111 0.218** 0.092 1

robbery, simple assault, theft, and third-degree felony firearm possession other 221 0.163** 0.068 1

aggravated assault, drug possession, drug sale, and simple assault Black 76 0.297** 0.134 1

aggravated assault, simple assault, and theft other 30 0.432** 0.195 1

aggravated assault and simple assault Black 14,262 0.024** 0.011 1

aggravated assault, robbery, simple assault, and third-degree felony
firearm possession other 11 0.500** 0.247 1

theft and vandalism other 236 0.151** 0.076 1

burglary, theft, and vandalism other 406 0.123** 0.062 1

aggravated assault, first offense DUI, and simple assault Black 94 0.222* 0.114 1

burglary, robbery, theft, and third-degree felony firearm possession Black 216 0.062* 0.033 1

robbery, simple assault, and theft other 865 0.079* 0.043 1

third-degree felony firearm possession White 416 0.116* 0.064 1

shoplifting and vandalism Black 41 0.302* 0.169 1

burglary and theft other 342 0.119* 0.067 1

. . . . . . . . . . . . . . . . . .

drug possession and marijuana possession Black 8,599 –0.049*** 0.011 1

shoplifting White 4,132 –0.088*** 0.020 1

motor vehicle theft White 890 –0.193*** 0.041 1

drug possession and drug purchase Black 6,885 –0.070*** 0.014 1

motor vehicle theft Black 2,183 –0.138*** 0.026 1

drug possession White 10,035 –0.052*** 0.010 1

drug possession and drug purchase White 7,692 –0.061*** 0.011 1

prostitution Black 2,967 –0.120*** 0.022 1

theft Black 5,886 –0.098*** 0.017 1

shoplifting Black 8,065 –0.115*** 0.014 1

Notes: The data are Stevenson (2018)’s sample of 331,971 arrests in Philadelphia. The first two columns identify one of the 431 groups based
on the offense type and the defendant’s race. N is the number of cases in a given group. ω̂k is the conditional first stage, that is, the group-specific
effect of Judge C on pretrial detention. σ̂ω̂k is the first-stage standard error. Entries in the table are sorted in descending order of z = ω̂k/σ̂ω̂k and
are restricted to twenty groups with the largest (most positive) and ten groups with the smallest (most negative) z statistics. Holm p-value equals
min(1, p∗), where p∗ is the product of the group-specific p-value for a one-sided test, based on ω̂k/σ̂ω̂k , and rk + 1, where rk is the number of
group-specific p-values greater than that for a given group.
*Statistically different from zero at the 10% level; **at the 5% level; ***at the 1% level.

24



of factors—such as the offense type and the demographic characteristics of the defendant—could
determine the amount of bail and the resulting likelihood of detention.

To incorporate additional factors into the analysis, I also consider two alternative specifications.
First, I define the groups based on the offense type, the defendant’s race, and their gender (male or
female). In theory, the number of groups could be as large as 3 · 218 in this specification, but only
563 groups remain after I drop those that are empty or otherwise too small—requiring, as above,
that there are at least three observations for every (G,Z) combination. Second, I define the groups
based on the offense type, the defendant’s race and gender, and three time periods considered by
Stevenson (2018). The relevance of these specific time periods—divided by February 23, 2009 and
February 23, 2011—results from concurring changes in the composition of magistrates other than
Judge C. This sets the maximum number of groups in this specification at 32 · 218; in practice, the
number of groups that are nonempty and sufficiently large is 981.

Table 8 reports the main results of my analysis. In panels C and D, for each of the three
specifications described above, I report the Bonferroni/Chernozhukov et al. (2019) p-value for
the test of violations of strong monotonicity as well as Mikusheva and Sun (2022)’s test statistic,
F̃, for the test of weak identification. The test results leave little doubt that strong monotonicity
is violated while identification is strong. The p-values for the former test never exceed 0.0015,
despite accounting for simultaneous testing of up to 981 hypotheses.18 The values of F̃ range
between 19.32 and 21.56. If the simulations in Section 3.3.3 are any guide, we should expect
negligible bias when estimating the interacted specification, at least when using the jackknife-type
estimators such as IJIVE, UJIVE, and FEJIV.

Panels A and B of Table 8 report OLS, IV, 2SLS, IJIVE, UJIVE, and FEJIV estimates of the
effects of pretrial detention on conviction and incarceration length. The noninteracted specifica-
tion, marked as “IV,” suggests that pretrial detention leads to a 17–19 p.p. increase in the likelihood
of being convicted and an increase in incarceration length of 670–720 days. Such effects would
have been substantial, but the validity of these estimates is questionable given the clear rejection of
strong monotonicity in this application. When we turn to the interacted specification, the estimates
become smaller. The effects on conviction are closer to zero—in the range of 4 to 15 p.p.—but
often remain significant.19 The effects on incarceration length are much smaller than in the nonin-
teracted specification and suggestive of an effect of 50–160 days. These estimates are also usually

18In the second and third specifications, the largest z statistic is obtained in very small groups, which makes the
normal approximation questionable. However, the rejection of strong monotonicity remains solid. The smallest Holm
p-values in groups with at least 100 cases are 0.0109 and 0.0105 in the second and third specifications, respectively.
The corresponding smallest Holm p-values in groups with at least 500 cases are 0.0408 and 0.0105. Note that these
p-values are conservative, because they implicitly penalize hypothesis testing in groups smaller than 100 or 500 cases,
even though such groups are ignored in this context.

19In the case of FEJIV, I report the standard errors derived by Chao et al. (2023). Practitioners should also consider a
recent alternative proposed by Boot and Nibbering (2024), which explicitly accounts for treatment effect heterogeneity.
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Table 8: Causal Effects of Pretrial Detention on Conviction and Incarceration Length

Specification #1 Specification #2 Specification #3
A. Effects on Conviction β̂ σ̂β̂ β̂ σ̂β̂ β̂ σ̂β̂

OLS 0.0591*** 0.0019 0.0567*** 0.0019 0.0530*** 0.0019
IV 0.1852* 0.1070 0.1920* 0.1022 0.1704 0.1039

2SLS 0.1116*** 0.0360 0.1193*** 0.0325 0.0610** 0.0271
IJIVE 0.1283** 0.0585 0.1433*** 0.0540 0.0429 0.0559
UJIVE 0.1304** 0.0616 0.1466** 0.0582 0.0419 0.0589
FEJIV 0.1292** 0.0604 0.1451** 0.0569 0.0417 0.0574

B. Effects on Incarceration Length β̂ σ̂β̂ β̂ σ̂β̂ β̂ σ̂β̂
OLS 184*** 3 176*** 2 173*** 3
IV 689*** 249 723*** 237 666*** 233

2SLS 158*** 47 159*** 41 130*** 43
IJIVE 95 76 124* 68 58 79
UJIVE 93 83 123 75 56 99
FEJIV 92 78 122* 70 51 91

C. Test of Violations of Monotonicity
p-value 3.73e-06 0.00133 1.83e-08

D. Pretest for Weak Identification
F̃ 21.38 21.56 19.32

Number of Groups 431 563 981
Number of Observations 327,560 325,915 319,573

Notes: The data are Stevenson (2018)’s sample of 331,971 arrests in Philadelphia. The outcomes are conviction (Panel A) or incarceration
length (Panel B), defined as the maximum days of an incarceration sentence. The treatment is pretrial detention. The instrument is whether a
given case was heard by Judge C. Each specification is based on a division of the sample into a number of mutually exclusive groups, with a
separate group for each combination of values of selected variables. Specification #1 uses the offense type and race (Black, White, or other) of
the defendant. Specification #2 uses the offense type, race, and gender (male or female) of the defendant. Specification #3 uses the offense type,
race and gender of the defendant, and three time periods considered by Stevenson (2018). Groups with fewer than three observations in either
(G,Z) combination are dropped. “OLS” is the OLS estimator in the regression of the outcome on the treatment indicator and group indicators.
“IV” is the IV estimator in the noninteracted specification. The remaining estimators are based on the interacted specification and are described
in Section 3.3. The test of violations of monotonicity is described in Remark 3.5 and reports the Bonferroni/Chernozhukov et al. (2019) p-values.
The pretest for weak identification follows Mikusheva and Sun (2022) and reports their test statistic, F̃. The cutoff for this test is 4.14. See also
the Stata implementation in Sun (2023).
*Statistically different from zero at the 10% level; **at the 5% level; ***at the 1% level.

not significantly different from zero, except for 2SLS. For both outcomes and each specification,
the IJIVE, UJIVE, and FEJIV estimates are practically indistinguishable from each other but also
clearly different from the 2SLS estimate.

My conclusions are generally in line with Stevenson (2018), whose paper includes a relatively
rare recent example of using specifications with interacted instruments (cf. Remark 3.1), although
not of AI’s interacted specification, which is implemented here. I also provide additional results in
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Appendix D. Table D.1 reports MB2SLS and JIVE estimates of the effects of pretrial detention.
While the MB2SLS estimates are largely similar to the results in Table 8, the JIVE estimates are
noisy and appear unreliable. Table D.2 reports the results of a bootstrap test for comparisons be-
tween the IV estimates in the noninteracted specification and various estimates of the interacted
specification.20 At the 5% level, I nearly always reject the null that the estimands are the same
in the case of incarceration length but not conviction. Finally, Table D.3 reports the results of a
similar bootstrap test for comparisons between 2SLS and other estimators of the interacted speci-
fication. These differences are often highly statistically significant, which reaffirms the importance
of correcting for the many instrument bias.

5 Conclusion

In this paper I studied the interpretation of linear IV and 2SLS estimands when both the treatment
and the instrument are binary, and when additional covariates are required for identification. Us-
ing the LATE framework of Imbens and Angrist (1994) and Angrist et al. (1996), I argued that
the common practice of interpreting standard IV estimands as a convex combination of condi-
tional LATEs, or even as the (unconditional) local average treatment effect, is substantially more
problematic than previously thought. I showed that the interpretation of the usual application of
IV, which limits the effects of the instrument in the reduced-form and first-stage regressions to
be homogeneous, hinges critically on the specific variant of the monotonicity assumption that the
researcher is willing to entertain. Under “weak monotonicity,” some of the IV weights may be
negative and the IV estimand may no longer be interpretable as a causal effect.

What should applied researchers do in practice? In this paper I argued that it might be worth-
while to revisit the interacted specification of Angrist and Imbens (1995), which is guaranteed to
eliminate negative weights under the same assumptions that are problematic for the usual appli-
cation of IV. Specifications with many interacted instruments were used in influential papers by
Angrist (1990) and Angrist and Krueger (1991) but appear to have been largely abandoned in sub-
sequent work out of concern for the many instrument bias. Unsurprisingly, however, the modern
tools to estimate such specifications are substantially better than in the 1990s, as I also demonstrate
in an extensive simulation study. A pretest for weak identification developed by Mikusheva and
Sun (2022) can be used to determine whether consistent estimation of the interacted specification
is possible. When the pretest rejects, several jackknife-type estimators can be used, including the
FEJIV estimator of Chao et al. (2023).

There are at least two important situations when this recommendation will not be satisfactory.

20I perform this test for 2SLS, MB2SLS, JIVE, and UJIVE, but not IJIVE and FEJIV, because the latter estimators
are very computationally demanding in the specifications that I consider, at least in my implementation.
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First, in some applications in which strong monotonicity is rejected, weak monotonicity will be
implausible, too. If this is the case, it may be worthwhile to instead consider the partial identifi-
cation approach of Noack (2021), which evaluates the sensitivity of what can be learned about the
local average treatment effect under violations of (weak) monotonicity. Second, a convex com-
bination of conditional LATEs, which Angrist and Imbens (1995)’s specification is guaranteed to
produce under weak monotonicity (and the usual application of IV under strong monotonicity),
may be considered an imperfect substitute for the (unconditional) local average treatment effect.21

If this is the case, there are many existing estimators that are consistent for the LATE under strong
monotonicity (see, e.g., Słoczyński, Uysal, and Wooldridge, 2024, and the references therein). An
important avenue for future research is to develop estimators of the LATE that are also robust to
weak monotonicity.
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Słoczyński, Tymon (2022): “Interpreting OLS Estimands When Treatment Effects Are Heteroge-

neous: Smaller Groups Get Larger Weights,” Review of Economics and Statistics, 104, 501–509.
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