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1 Introduction

Recent papers by Barsky et al. (2002), Black et al. (2006), Melly (2006), and Fortin, Lemieux,

and Firpo (2011) have noted that the Oaxaca–Blinder decomposition, a popular method used

in empirical labour economics to study differentials in mean wages,1 provides a consistent es-

timator of the population average treatment effect on the treated (PATT). Precisely, applied

researchers in labour economics have often used the Oaxaca–Blinder decomposition to esti-

mate two components of a wage differential: a component attributable to differences in group

composition (the explained component) and a component attributable to net effects of group

membership (the unexplained component). It is the unexplained component in the most basic

version of the Oaxaca–Blinder decomposition which constitutes a consistent estimator of the

PATT. In an important contribution, Kline (2011) has recently shown that this method is equiva-

lent to a propensity score reweighting estimator based on a linear model for the treatment odds,

and satisfies therefore the “double robustness” property (Robins, Rotnitzky, and Zhao 1994).

He has also used the well-known National Supported Work (NSW) data2 to provide a seminal

assessment of the finite-sample performance of the Oaxaca–Blinder decomposition, though he

has only used a single non-experimental comparison dataset and a single selection of control

variables, and he has compared his result to a relatively small number of alternative estimates.

In this paper I provide a much broader picture of the finite-sample performance of the

Oaxaca–Blinder unexplained component as an estimator of the PATT. I also use the NSW data,

but I closely follow Dehejia and Wahba (1999) in their sample and variable selections, so

that I can reassess their influential claim that methods based on the propensity score com-

pare favourably with other estimators. When overlap is imposed, the Oaxaca–Blinder de-

composition is shown to perform superior compared to any of the estimators in Dehejia and

Wahba (1999) and to additional methods such as inverse probability weighting, kernel match-

ing, matching on covariates, and bias-corrected matching. To assess the robustness of this

1See Blinder (1973) and Oaxaca (1973) for seminal contributions and Fortin et al. (2011) for a comprehensive
survey. Over the last two decades, the decomposition framework has also been extended to distributional statistics
other than the mean (see, e.g., Juhn, Murphy, and Pierce 1993; DiNardo, Fortin, and Lemieux 1996; Melly 2005).

2These data were analysed originally by LaLonde (1986) and subsequently by Heckman and Hotz (1989),
Dehejia and Wahba (1999, 2002), Smith and Todd (2001, 2005), Becker and Ichino (2002), Angrist and Pischke
(2009), Porro and Iacus (2009), Abadie and Imbens (2011), Diamond and Sekhon (2013), and others.
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result, I consider alternative sample and variable selections, and present an “empirical Monte

Carlo study” (Huber, Lechner, and Wunsch 2013) which is also based on the NSW data.3 Gen-

erally, the Oaxaca–Blinder decomposition always performs very well, and never significantly

worse than any other method. At first, this might be seen as surprising, given the simplic-

ity of this estimator. Note, however, that at least two recent papers, Khwaja et al. (2011)

and Huber et al. (2013), have presented simulation studies which are suggestive of very good

finite-sample performance of flexible OLS.4 In both cases the authors have actually applied

an estimator which is either equivalent or very similar to Oaxaca–Blinder, although have re-

ferred to this method in a different way.5 In this paper I complement these previous analyses

by exploring the connection with the decomposition literature, and focus on the NSW data.

2 The Treatment Effects Framework

Consider a population of N individuals, indexed by i = 1, . . . , N , who are divided into two

disjoint groups, 0 and 1.6 Individuals in group 1 are exposed to regime that is called treatment,

while individuals in group 0 are exposed to regime that is called control. To indicate group

membership, a binary variable Wi is used, and Wi = 0 (Wi = 1) if individual i belongs to

group 0 (group 1). A row vector of covariates, Xi, is also observed for each i. Moreover,

it is assumed there exist two potential outcomes for each individual i, the treated outcome

Yi(1) and the nontreated outcome Yi(0). It is the group membership of each individual i which

causes one of the potential outcomes to become observable and the other potential outcome to

become counterfactual. The realised outcome is denoted by Yi. Consequently, Yi = Yi(Wi) =

Yi(0)(1−Wi) + Yi(1)Wi.

The main interest in the treatment effects framework lies in determining causal effects of

treatment. Such an effect, for each individual i, is defined as the difference between her treated
3Since Advani and Słoczyński (2013) have recently demonstrated that the internal validity of empirical Monte

Carlo studies might be quite low, this simulation study is only intended to provide a comparison with the previous
literature. The choice of simulation design is quite limited anyway, as it is widely accepted that stylised Monte
Carlo studies do not have much external validity (Busso, DiNardo, and McCrary 2013; Huber et al. 2013).

4A related point has also been made by Kang and Schafer (2007) in the context of incomplete-data estimation.
5Generally, various versions of the Oaxaca–Blinder decomposition are equivalent to various versions of flex-

ible OLS in Imbens and Wooldridge (2009). See also Słoczyński (2013) for a discussion.
6The exposition here is standard and borrows notation from Imbens and Wooldridge (2009). Other surveys of

the treatment effects literature include Cobb-Clark and Crossley (2003) and Angrist and Pischke (2009).
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and her nontreated outcome, Yi(1)−Yi(0). In general, such treatment effects are averaged over

various (sub)populations of interest. The average over the subpopulation of treated individuals

is called the population average treatment effect on the treated (PATT):

τPATT = E[Yi(1)− Yi(0) | Wi = 1]. (1)

Alternatively, one may wish to average individual treatment effects over the whole population

to obtain the population average treatment effect (PATE):

τPATE = E[Yi(1)− Yi(0)]. (2)

There are generally two main strands in the treatment effects literature, often referred to as

selection on observables and selection on unobservables, and this division is based on assump-

tions which are used to identify various treatment effects. This paper – and all the analyses of

the NSW data in general – is only concerned with selection on observables, a strand whose main

assumptions are typically referred to as unconfoundedness and overlap.7 Under unconfound-

edness, it is assumed there do not exist any unobserved variables which would be associated

both with the potential outcomes and the treatment status. Consequently:

Wi ⊥ (Yi(0), Yi(1) | Xi). (3)

Under overlap, on the other hand, it is assumed there do not exist such (sets of) values of the

control variables which would perfectly predict either of the treatment statuses:

0 < pr(Wi = 1 | Xi = x) < 1, for all x. (4)

Under the assumptions of unconfoundedness and overlap both the PATT and the PATE are

identified (see Imbens and Wooldridge 2009),8 and can be estimated using a large number of

7As discussed by Smith and Todd (2005), however, the assumption of unconfoundedness is unlikely to hold
in the NSW data. For example, NSW participants were generally placed in different local labour markets than
comparison group members. Also, the set of observed control variables is relatively poor. Nevertheless, previous
studies of the NSW data were implicitly based on unconfoundedness, and this paper follows in this tradition.

8In order to identify the PATT, only the second inequality in (4) is required.
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alternative estimators. Like previous studies of the NSW data, this paper investigates the finite-

sample performance of various estimators of the PATT.

3 Estimators

A recent survey of the alternative estimators of average treatment effects has been provided

by Imbens and Wooldridge (2009). Several contributions have also noted (Barsky et al. 2002;

Black et al. 2006; Melly 2006; Fortin et al. 2011) that the PATT can be estimated using the

Oaxaca–Blinder decomposition.9 Precisely, let the model for outcomes be linear and let the

regression coefficients be flexible, i.e. different for the treated and the nontreated individuals:

Yi = Xiβ1 + υ1i if Wi = 1 and Yi = Xiβ0 + υ0i if Wi = 0, (5)

where E[υ1i | Xi] = E[υ0i | Xi] = 0. What follows:

E[Yi | Wi = 1]− E[Yi | Wi = 0] =

= E[Xi | Wi = 1] · β1 − E[Xi | Wi = 0] · β0

= E[Xi | Wi = 1] · (β1 − β0) + (E[Xi | Wi = 1]− E[Xi | Wi = 0]) · β0

= E[Yi(1)− Yi(0) | Wi = 1] + (E[Yi(0) | Wi = 1]− E[Yi(0) | Wi = 0])

= τPATT + (E[Yi(0) | Wi = 1]− E[Yi(0) | Wi = 0]). (6)

In other words, any intergroup differential in outcomes can be decomposed into the net effect of

treatment (the PATT) and a component attributable to differences in group composition (selec-

tion bias). These two components have typically been referred to as the unexplained component

and the explained component, respectively, and the former has often been interpreted as “dis-

crimination” in studies of intergroup wage differentials. Such an estimator of the PATT can be

applied either as the distance between the two estimated regression functions which is evalu-

ated at the mean values of control variables in the treated subsample or, as noted by Słoczyński

9Also, the PATE can be estimated using a version of the so-called “generalised Oaxaca–Blinder decomposi-
tion” which has been proposed by Słoczyński (2013).
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(2013), as the coefficient on Wi in the regression of Yi on 1, Wi, Xi, and Wi · (Xi − X1).

Recently, Kline (2011) has shown that this estimator is not only consistent for the PATT, but

also “doubly robust” (Robins et al. 1994), since it is equivalent to a reweighting estimator

based on a linear model for the treatment odds.10 Standard errors for various components of

Oaxaca–Blinder decompositions were derived by Jann (2008).11

In this paper I also implement several more sophisticated methods which have received

considerable attention in the treatment effects literature. I use three other reweighting (inverse

probability weighting) estimators in which the nontreated subsample is reweighted with the

inverse of the estimated propensity score (the conditional probability of treatment). These

estimators were described in detail by Busso, DiNardo, and McCrary (2009), and referred to as

IPW1, IPW2, and IPW3. In IPW1, the sum of weights is stochastic; in IPW2, it is always equal

to 1; IPW3 is a linear combination of IPW1 and IPW2 which minimises the asymptotic variance

of the resulting estimator (Lunceford and Davidian 2004). As shown by Hirano, Imbens, and

Ridder (2003), IPW1 achieves the semiparametric efficiency bound if the propensity score is

estimated with a particular series estimator. In practice, however, a logit or probit model is

typically used, and inference either follows Lunceford and Davidian (2004) or relies on the

bootstrap.

I also use kernel matching, and match on the estimated propensity score using both the

Epanechnikov and Gaussian kernels. Large sample properties of this class of estimators were

studied by Heckman, Ichimura, and Todd (1998) and kernel-based propensity score matching

was shown to be inefficient. Nevertheless, these estimators are generally quite popular, and

standard errors are usually bootstrapped.12

Another popular estimator is nearest-neighbour (NN) matching which has been studied

extensively by Abadie and Imbens (2006, 2008, 2011). NN matching was shown not to be
√
n-

10This reweighting interpretation of Oaxaca–Blinder only requires the overlap assumption in its weaker form.
“Double robustness” guarantees that estimation is consistent if either the model for each of the potential outcomes
or the model for the treatment odds is linear. As explained by Kline (2011), this latter functional form arises
naturally whenever the (treatment) assignment error is log-logistic.

11I am not aware of any papers which would study specification choice for Oaxaca–Blinder decompositions.
Still, since Oaxaca–Blinder is essentially equivalent to a linear regression with a full set of interactions between
the treatment and control variables, applied researchers might find it less important to include further interactions.
Higher-order terms of certain continuous variables might still be useful, though.

12Kernel matching also requires the choice of bandwidth, and I rely on leave-one-out cross-validation (see,
e.g., Busso et al. 2009) using a relatively sparse grid of 0.005× 1.8g for g = 0, 1, . . . , 5.
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consistent in general, and not to attain the semiparametric efficiency bound in settings where

it attains
√
n-consistency (Abadie and Imbens 2006). Therefore, I use both the standard and

the bias-adjusted variant of matching (Abadie and Imbens 2011), and match both on covariates

and on the estimated propensity score, using 1 and 4 matches. It is important to note that the

bootstrap is not valid for matching estimators (Abadie and Imbens 2008), and inference should

be based on the analytic standard errors in Abadie and Imbens (2006).

Moreover, I use stratification on the estimated propensity score as well as a combination

of stratification and within-strata regression adjustment. As recommended by Rosenbaum and

Rubin (1984), I divide all observations into five strata using the quintiles of the distribution

of the estimated propensity score. Then, I either compare mean outcomes of the treated in-

dividuals and the nontreated individuals within each stratum or estimate within-strata average

treatment effects using linear regression, and average across all strata. In both cases inference

should be based on a simple formula in Imbens and Wooldridge (2009).

As a comparison with the previously discussed methods, I also use linear regression (pooled

OLS). Of course, this method is similar to the Oaxaca–Blinder decomposition, although it

restricts the regression coefficients to be equal for the treated and the nontreated individuals; it

is also implicitly based on the assumption of homogeneous treatment effects.

All these estimators are applied in four variants, as I use them both on the full sample and

on samples which are restricted in order to improve overlap. Since a weaker version of (4)

is required for identification, I discard all the treated individuals whose estimated propensity

score is less than the minimum or greater than the maximum estimated propensity score for the

nontreated individuals (Rule 1). This rule guarantees that treatment effects are not estimated for

those treated individuals for whom no similar counterparts can be found in the nontreated sub-

sample. Following Dehejia and Wahba (1999), I also use an alternative rule, and discard all the

nontreated individuals whose estimated propensity score is less than the minimum or greater

than the maximum estimated propensity score for the treated individuals (Rule 2). There is a

subtle difference between these two rules, as in the latter case I still estimate treatment effects

for all the treated individuals, but it is guaranteed that none of the dissimilar nontreated indi-

viduals is used to calculate the counterfactual outcome for the treated. Finally, I use a rule of
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thumb which has recently been derived by Crump et al. (2009). These authors have developed

a systematic approach to select subsamples which diminish sensitivity to the choice of speci-

fication, and concluded that the optimal rule can typically be approximated by discarding all

the individuals whose estimated propensity score is less than 0.1 or greater than 0.9 (Rule 3).

It is important to note that this rule is not designed to remove biases in estimation of average

treatment effects; still, it has been used to reduce bias by Angrist and Pischke (2009), so it may

be worthwhile to examine whether it is successful in general. Also, note that Rules 1 and 3

implicitly change the estimand. The new estimand is also an average treatment effect on the

treated, but only averaged for individuals with appropriate values of the estimated propensity

score. In all cases, however, I define biases relative to the “true” PATT, as this estimand seems

to be more interesting in applications.

4 An Application of the Oaxaca–Blinder Unexplained Com-

ponent to the NSW Data

4.1 The National Supported Work (NSW) data

The National Supported Work (NSW) Demonstration was a U.S. employment programme im-

plemented in the mid-1970s to provide work experience to disadvantaged workers. Unlike

many similar programmes, the NSW assigned treatment (participation) on random, so the pool

of potential participants was exogenously divided into an experimental and a control group, thus

allowing for a straightforward, unbiased estimation of average treatment effects (see LaLonde

1986 and Smith and Todd 2005 for detailed descriptions of the NSW).

In an influential paper, LaLonde (1986) examined the finite-sample performance of vari-

ous non-experimental estimators in a novel way. He discarded the original control group from

the NSW data, and created six alternative non-experimental comparison datasets using stan-

dard surveys of the U.S. population, the Panel Study of Income Dynamics (PSID) and the

Current Population Survey (CPS). His approach was based on a conjecture that a reasonable

non-experimental estimator should be able to closely replicate the experimental estimate of
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Table 1: Sample means of outcome and control variables for the NSW and comparison datasets
DW (1999) ST (2005)

Treated Control Treated Control PSID-1 PSID-2 PSID-3 CPS-1 CPS-2 CPS-3
Number of observations 185 260 108 142 2,490 253 128 15,992 2,369 429
Outcome variable

Earnings ’78 6,349 4,555 7,357 4,609 21,554 9,996 5,279 14,847 10,171 6,984
(7,867) (5,484) (9,027) (6,032) (15,555) (11,184) (7,763) (9,647) (8,852) (7,294)

Control variables
Age 25.82 25.05 25.37 26.01 34.85 36.09 38.26 33.23 28.25 28.03

(7.16) (7.06) (6.25) (7.11) (10.44) (12.08) (12.89) (11.05) (11.70) (10.79)
Education 10.35 10.09 10.49 10.27 12.12 10.77 10.30 12.03 11.24 10.24

(2.01) (1.61) (1.64) (1.57) (3.08) (3.18) (3.18) (2.87) (2.58) (2.86)
No degree 0.71 0.83 0.71 0.80 0.31 0.49 0.51 0.30 0.45 0.60

(0.46) (0.37) (0.45) (0.40) (0.46) (0.50) (0.50) (0.46) (0.50) (0.49)
Black 0.84 0.83 0.82 0.82 0.25 0.39 0.45 0.07 0.11 0.20

(0.36) (0.38) (0.38) (0.39) (0.43) (0.49) (0.50) (0.26) (0.32) (0.40)
Hispanic 0.06 0.11 0.07 0.11 0.03 0.07 0.12 0.07 0.08 0.14

(0.24) (0.31) (0.26) (0.32) (0.18) (0.25) (0.32) (0.26) (0.28) (0.35)
Married 0.19 0.15 0.20 0.19 0.87 0.74 0.70 0.71 0.46 0.51

(0.39) (0.36) (0.40) (0.39) (0.34) (0.44) (0.46) (0.45) (0.50) (0.50)
“Earnings ’74” 2,096 2,107 3,590 3,858 19,429 11,027 5,567 14,017 8,728 5,619

(4,887) (5,688) (5,971) (7,254) (13,407) (10,815) (7,255) (9,570) (8,968) (6,789)
“Nonemployed ’74” 0.71 0.75 0.50 0.54 0.09 0.23 0.41 0.12 0.21 0.26

(0.46) (0.43) (0.50) (0.50) (0.28) (0.42) (0.49) (0.32) (0.41) (0.44)
Earnings ’75 1,532 1,267 2,596 2,277 19,063 7,569 2,611 13,651 7,397 2,466

(3,219) (3,103) (3,872) (3,919) (13,597) (9,042) (5,572) (9,270) (8,112) (3,292)
Nonemployed ’75 0.60 0.68 0.32 0.47 0.10 0.34 0.61 0.11 0.18 0.31

(0.49) (0.47) (0.47) (0.50) (0.30) (0.47) (0.49) (0.31) (0.38) (0.46)

NOTE: Standard deviations are in parentheses. Earnings are in 1982 dollars. Education = number of years of schooling; No degree = 1
if no high school degree, 0 otherwise. DW (1999) and ST (2005) refer to subsets of the NSW dataset which were created by Dehejia and
Wahba (1999) and Smith and Todd (2005), respectively.

the average treatment effect, while using only the treated subsample and a non-experimental

comparison group. LaLonde (1986) concluded that non-experimental estimators were typically

unable to replicate the experimental results, and his findings were instrumental in popularising

experimental and quasi-experimental designs in labour economics.

Following LaLonde (1986), the NSW data were analysed by many researchers, including

Heckman and Hotz (1989), Dehejia and Wahba (1999, 2002), Smith and Todd (2001, 2005),

Becker and Ichino (2002), Angrist and Pischke (2009), Porro and Iacus (2009), Abadie and

Imbens (2011), Kline (2011), and Diamond and Sekhon (2013). In an influential contribution,

Dehejia and Wahba (1999) closely replicated the experimental estimate of the average treatment

effect using various methods based on the propensity score.

In this paper I use a version of the NSW data which was created by Dehejia and Wahba

(1999), and supplement it with the “early RA” sample from Smith and Todd (2005). These
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latter data are generally preferable to those from Dehejia and Wahba (1999), since Dehejia and

Wahba (1999) controversially included only those individuals randomised after April 1976 who

were not employed in months 13–24 before random assignment. Table 1 presents descriptive

statistics for all the subsamples used in the analysis, including the PSID and CPS comparison

datasets.13 There are substantial disparities in means of control and outcome variables between

the NSW experimental and control groups and the PSID and CPS comparison groups. It is

precisely these disparities that hinder non-experimental replication of the experimental estimate

of the average treatment effect. This estimate is equal to $1,794 for Dehejia and Wahba (1999)

and $2,748 for Smith and Todd (2005).

4.2 A reanalysis of Dehejia and Wahba (1999)

In this subsection I closely follow Dehejia and Wahba (1999) in their sample and variable

selections, so that I can reassess their claim that methods based on the propensity score compare

favourably with other estimators. Dehejia and Wahba (1999) used all the six non-experimental

comparison datasets (PSID1–3 and CPS1–3), and descriptive statistics in Table 1 in this paper

are nearly identical to the values reported in Table 1 in Dehejia and Wahba (1999) and Table 1 in

Smith and Todd (2005).14 In their analysis, Dehejia and Wahba (1999) applied three different

selections of control variables, each of them matched to one, two or three non-experimental

comparison datasets.15 As explained by the authors, their variable selections were based on

balancing tests, i.e. a specification was accepted whenever the null that all control variables are

balanced within each stratum could not be rejected. To make the subsequent estimates of the

13As described in LaLonde (1986), PSID-1 includes all men in the original PSID data, except those who were
older than 55 or classified as retired; PSID-2 is a subset of PSID-1 which includes those men who were not
employed in the spring of 1976; PSID-3 is a subset of PSID-2 which includes those men who were not employed
in the spring of 1975. Similarly, CPS-1 includes all men in the original CPS data, except those who were older
than 55; CPS-2 is a subset of CPS-1 which includes those men who were not employed in March 1976; CPS-3 is
a subset of CPS-2 which includes those men whose income in 1975 was lower than the poverty level.

14Unfortunately, this is not the case with LaLonde (1986) whose CPS-2 and CPS-3 subsamples could not be
recreated by Dehejia and Wahba (1999). Table 1 in this paper closely replicates, however, descriptive statistics for
PSID-1, PSID-2, PSID-3, and CPS-1 which were reported in Table 3 in LaLonde (1986).

15For PSID-1, Dehejia and Wahba (1999) selected Age, Age squared, Education, Education squared, Married,
No degree, Black, Hispanic, “Earnings ’74”, “Earnings ’74” squared, Earnings ’75, Earnings ’75 squared, and the
product of Black and “Nonemployed ’74”. For PSID-2 and PSID-3, they also included “Nonemployed ’74” and
Nonemployed ’75, but excluded the product of Black and “Nonemployed ’74”. For CPS-1, CPS-2, and CPS-3 –
as compared with the latter variable selection – they also included Age cubed and the product of Education and
“Earnings ’74”, but on the other hand excluded both “Earnings ’74” squared and Earnings ’75 squared.
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PATT fully comparable with the results reported by Dehejia and Wahba (1999), I apply exactly

the same sets of control variables throughout this subsection.16

Table A.1 presents mean biases, root mean square errors (RMSEs), and standard deviations

(SDs) for a large number of non-experimental estimators which utilise sample and variable

selections from Dehejia and Wahba (1999). RMSEs are calculated as:

RMSE =

√∑
j∈(τ̂j − τ̂exp)2

6
, (7)

where  is a set of comparison datasets and τ̂exp is the benchmark estimate. Mean biases are

calculated analogously. Similar to Becker and Ichino (2002), I have been unable to replicate

most of the results in Dehejia and Wahba (1999), so the upper panel of Table A.1 reports values

which can be calculated using the estimates in Table 3 in Dehejia and Wahba (1999).17

Among new results in Table A.1, Oaxaca–Blinder performs remarkably well. Whenever

overlap is improved (Rules 1–3), the Oaxaca–Blinder decomposition performs best in terms

of RMSE and very well in terms of mean bias. When overlap is not improved (Full sample),

Oaxaca–Blinder is still classified as the third best estimator, both in terms of RMSE and mean

bias. Also, for Rules 1 and 2 Oaxaca–Blinder performs better in terms of RMSE than any of the

estimators in Dehejia and Wahba (1999); although Oaxaca–Blinder is slightly more biased than

the stratification-based estimators in Dehejia and Wahba (1999), it has very small variance, and

performs therefore particularly well on RMSE. Still, when I test the statistical significance of

the differences between the smallest RMSE (Oaxaca–Blinder, Rule 1) and all other RMSEs, I

often cannot reject the null. Especially, Oaxaca–Blinder seems to be only insignificantly better

than IPW, kernel matching with the Epanechnikov kernel, some variants of NN matching on

16I perform all calculations in Stata and apply the following user-written commands: nnmatch
(Abadie et al. 2004), oaxaca (Jann 2008), and psmatch2 (Leuven and Sianesi 2003).

17It is generally impossible to replicate the results in Dehejia and Wahba (1999) for stratification-based estima-
tors, since the authors did not report the number of strata and their boundaries. Their regression estimates (column
2, Table 3) can be replicated, although the authors reported their variable selection incorrectly; these estimates
require including Earnings ’75 squared in the reported specification. Using variable selections reported in Dehejia
and Wahba (1999), I also obtain very different estimates for NN matching on the propensity score. For PSID-1,
I get 560 instead of 1,691; for PSID-2, 871 instead of 1,455; for PSID-3, 1,522 instead of 2,120; for CPS-1, 730
instead of 1,582; for CPS-2, 1,399 instead of 1,788; for CPS-3, –662 instead of 587. At the same time, I have been
able to replicate the original estimates for PSID-2 and PSID-3, and this requires excluding No degree from the
reported specification, as the authors – again – reported their variable selection incorrectly. Therefore, in general,
I might not be applying specifications which were used by Dehejia and Wahba (1999), even though I definitely
apply their reported specifications.
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the propensity score, and stratification with regression adjustment.

While improving overlap using Rules 1 and 2 does not seem, on average, to make much

difference,18 Rule 3 (Crump et al. 2009) has a clear negative effect on the performance of the

estimators, and it increases both their bias and variance. Intuitively, if treatment effects are

heterogeneous, then removal of a large fraction of treated individuals (28–52%) will typically

bias the resulting estimate of the PATT. Clearly, this rule has not been designed to reduce

biases when estimating average treatment effects, and one should generally acknowledge that

its application changes the estimand. Still, it has been used to reduce bias by Angrist and

Pischke (2009), and this has warranted an examination of its performance.

4.3 Robustness checks

To assess the robustness of the very good performance of Oaxaca–Blinder, in this subsection

I consider alternative sample and variable selections. First, I continue using the Dehejia and

Wahba (1999) version of the NSW data, but change the variable selection, and utilise a spec-

ification from a recent paper by Abadie and Imbens (2011).19 These results are presented in

Table A.2. Second, I use the “early RA” sample from Smith and Todd (2005), but maintain the

variable selection from the previous subsection. These results are presented in Table A.3.

Under the new variable selection (Table A.2), biases and variances of the estimators are

generally higher. Oaxaca–Blinder continues, however, to perform very well. In terms of RMSE,

it is only outperformed by inverse probability weighting, but this difference is not significant.

In terms of mean bias, Oaxaca–Blinder performs relatively worse, although it continues to be

one of the best-performing estimators. Stratification and NN matching with a small number of

neighbours (k = 1) generally perform significantly worse than IPW. Rule 3 (Crump et al. 2009)

continues to increase both bias and variance of the estimators.

As reported by Smith and Todd (2005), it is very difficult to replicate the experimental

benchmark using their “early RA” sample, and this is evident in Table A.3 where biases and

variances are again much higher. Still, Oaxaca–Blinder with no overlap improvement performs
18If anything, Rule 1 (Rule 2) seems to be slightly unsuccessful (successful) in improving the finite-sample

performance of the estimators.
19This selection of control variables is identical for all the comparison datasets, and it includes Age, Education,

Married, Black, Hispanic, “Earnings ’74”, Earnings ’75, “Nonemployed ’74”, and Nonemployed ’75.

11



best in terms of RMSE among all the estimators, and it also performs very well – especially

in terms of RMSE, but also in terms of mean bias – within each class of overlap improve-

ment rules. Many of these differences in RMSEs are again not significant, but Oaxaca–Blinder

seems to consistently outperform regression, stratification, and several variants of NN match-

ing. Rules 1 and 3 increase bias and variance of the estimators.

4.4 An empirical Monte Carlo study

In this subsection I provide a further robustness check, and present an “empirical Monte Carlo

study” which is also based on the NSW data. It is a difficult decision to choose an appropriate

design for a simulation study, since it is now widely accepted that traditional (“stylised”) Monte

Carlos do not have much external validity (Busso et al. 2013; Huber et al. 2013) and a recent

contribution has questioned the internal validity of empirical Monte Carlo studies, i.e. their

ability to replicate the true ranking of estimators for a given dataset (Advani and Słoczyński

2013). This robustness check is therefore primarily intended to provide a comparison with the

recent literature.

The design of this simulation exercise follows a recent paper by Huber et al. (2013). In

the first step, I estimate a logit model for the propensity score using the Dehejia and Wahba

(1999) subset of the treated subsample and the CPS-1 comparison dataset. My variable selec-

tion follows Abadie and Imbens (2011). I calculate the linear prediction from this model for

each individual in the nontreated subsample (Xiβ̂), and discard all the treated. Next, in each

replication I draw a sample of size N from the remaining data (with replacement). For each

unit in this sample, I then draw an iid logistic error, εi, and assign the status of “placebo treated”

using Wi = 1(W ∗
i > 0) where W ∗

i = α̂ + Xiβ̂ + εi and α̂ is a constant which is chosen to

ensure that the proportion of “placebo treated” is equal to the desired value. Clearly, such a

simulation design guarantees that the true effect of treatment is always zero by construction,

and does not rely therefore on artificial data-generating processes.

To shed some light on the data features which codetermine the relative performance of the

Oaxaca–Blinder decomposition, I vary N and α̂, and run four simulation exercises in total: (i)

with N = 300 and pr(Wi = 1) = 0.5, (ii) with N = 1, 200 and pr(Wi = 1) = 0.1, (iii)

12



Table 2: Regression analysis of the Monte Carlo results: The dependent variable is the root mean square error of
an estimator

Model 1 Model 2 Model 3
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Constant 1,947*** (255) 1,947*** (254) 1,967*** (267)
Small dataset (N = 300) 1,151*** (161) 1,151*** (163) 1,170*** (175)
Small pr. of treatment (p = 10%) –127 (161) –127 (161) –118 (173)
Large pr. of treatment (p = 90%) 671*** (186) 671*** (186) 667*** (201)
Improving overlap: Rule 1 –1,121*** (178) –1,121*** (178) –1,134*** (192)
Improving overlap: Rule 2 8 (126) 8 (131) –8 (135)
Improving overlap: Rule 3 –1,811*** (181) –1,811*** (181) –1,884*** (193)
Oaxaca–Blinder 138 (271) 138 (268) –146 (335)
Stratification 72 (296) 72 (293) 72 (308)
IPW1 4,962*** (735) 4,962*** (728) 4,962*** (742)
IPW2 1,143*** (280) 1,143*** (277) 1,143*** (288)
IPW3 845*** (260) 845*** (258) 845*** (269)
Kernel matching, Epanechnikov 902*** (314) 902*** (312) 889*** (332)
Kernel matching, Gaussian 810** (321) 810** (319) 797** (335)
NN matching on covariates, k = 1 681** (272) 681** (282)
NN matching on covariates, k = 1 (bias-adj.) 974*** (274) 974*** (283)
NN matching on the score, k = 1 1,496*** (301) 1,496*** (309)
NN matching on the score, k = 1 (bias-adj.) 1,126*** (279) 1,126*** (288)
NN matching on covariates, k = 4 850*** (282) 850*** (291)
NN matching on covariates, k = 4 (bias-adj.) 656** (265) 656** (274)
NN matching on the score, k = 4 691*** (266) 691** (276)
NN matching on the score, k = 4 (bias-adj.) 988*** (287) 988*** (296)
NN matching 923*** (256)
NN matching on the score 285** (116)
NN matching, k = 4 –273** (116)
NN matching (bias-adj.) 7 (116)
Oaxaca–Blinder × Small dataset (N = 300) –266 (189)
Oaxaca–Blinder × Small pr. of treatment (p = 10%) –118 (313)
Oaxaca–Blinder × Large pr. of treatment (p = 90%) 49 (372)
Oaxaca–Blinder × Improving overlap: Rule 1 180 (336)
Oaxaca–Blinder × Improving overlap: Rule 2 235 (314)
Oaxaca–Blinder × Improving overlap: Rule 3 1,059*** (406)

Observations 232 232 232
R2 0.721 0.715 0.725

NOTE: The estimation sample consists of the results of all Monte Carlos. All coefficients are expressed in 1982 dollars. Robust standard
errors are in parentheses. *Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

with N = 1, 200 and pr(Wi = 1) = 0.5, and (iv) with N = 1, 200 and pr(Wi = 1) = 0.9.20

Similar to Huber et al. (2013), I use 16,000 replications for N = 300 and 4,000 replications for

N = 1, 200. Also, I follow Huber et al. (2013) in summarising the results of these simulations

using regression analysis, i.e. root mean square errors of the estimators are regressed on binary

variables which represent these estimators as well as data features, overlap improvement rules,

20These combinations of N and α̂ follow Huber et al. (2013) who have also considered a larger sample of
N = 4, 800.
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and selected interactions. These results are presented in Table 2.21

Stratification with regression adjustment (omitted category) performs best in terms of RMSE,

and there are only two estimators which do not perform significantly worse: stratification and

Oaxaca–Blinder.22 IPW1 (unnormalised reweighting) and NN matching on covariates with a

small number of matches perform particularly badly. On the other hand, matching on covari-

ates is generally better than matching on the propensity score (Model 2); also, if one uses NN

matching, then it seems to make sense to choose a larger number of matches, while bias ad-

justment does not make much difference. Intuitively, RMSEs are larger for small datasets and

whenever the ratio of treated to control units is very large (9:1).

Unlike in the previous applications, Rules 1 and 3 improve the finite-sample performance

of the estimators. This difference can be interpreted as an effect of the simulation design which

restricts treatment effects to be homogeneous. In such a setting it might always be helpful to

discard all the individuals which do not have good matches in the other subsample, as the true

effect of treatment can still be estimated using the remaining data.

Also, this simulation study does not seem to have uncovered any data features which would

determine the relative performance of Oaxaca–Blinder. Its relative performance improves in

small datasets, but this effect is not significant. Rule 3 (Crump et al. 2009) has a relatively

small effect on the performance of Oaxaca–Blinder, compared to other estimators.

5 Summary and Conclusions

In this paper I use the NSW data to examine the finite-sample performance of the Oaxaca–

Blinder decomposition as an estimator of the population average treatment effect on the treated

(PATT). I utilise the same sample and variable selections which were used in an influential

paper by Dehejia and Wahba (1999), and conclude that Oaxaca–Blinder performs better, on

average, than any of the estimators in this original paper. To assess the robustness of this result,
21Because of computational burden I exclude kernel matching from simulations with N = 1, 200. This esti-

mator is computationally intensive, as it requires cross-validation of the bandwidth in each replication. Also, I do
not report simulation results for regression, since this method has an unfair advantage in a design which implicitly
assumes that treatment effects are homogeneous. On average, regression performed best in terms of RMSE, and
such a result is clearly not believable in general.

22Note that neither stratification nor stratification with regression adjustment has been considered by Hu-
ber et al. (2013), while Oaxaca–Blinder has been referred to in a different way.
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I explore alternative variable (Abadie and Imbens 2011) and sample (Smith and Todd 2005)

selections, and perform an “empirical Monte Carlo study” (Huber et al. 2013) which is also

based on the NSW data. I conclude that the very good performance of Oaxaca–Blinder is

indeed a robust result which holds in all these cases.

More generally, however, I do not wish to claim that this result will inevitably hold in

every setting. The programme evaluation literature acknowledges that there exists no estimator

which performs very well in every circumstance, and in my view rightly so. Also, although I

use a dataset which has received remarkable attention in this literature, it can still be argued

that it is not clear whether this result should hold for other datasets. Empirical researchers

are usually advised to apply several estimators as a form of a robustness check. This paper

might encourage them to consider Oaxaca–Blinder as an easily applicable counterpart of more

sophisticated semiparametric and nonparametric methods.
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