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Despite five decades of progress since the civil rights movement, black–
white gaps in economic outcomes persist in the United States. Much

research has focused on racial differences in wages (Neal and Johnson
1996; Lang and Manove 2011), labor force participation (Boustan and
Collins 2014), unemployment (Ritter and Taylor 2011), home ownership
(Collins and Margo 2001; Charles and Hurst 2002), wealth (Blau and
Graham 1990; Barsky, Bound, Charles, and Lupton 2002), cognitive skills
(Fryer and Levitt 2004, 2006, 2013; Bond and Lang 2013), non-cognitive
skills (Elder and Zhou 2017), infant mortality (Elder, Goddeeris, and
Haider 2016), and other outcomes. Recent surveys of this topic—and the
related problem of racial discrimination—include Charles and Guryan
(2011), Fryer (2011), and Lang and Lehmann (2012). Even after control-
ling for many observable characteristics of individuals, a typical study finds a
significant black–white gap that remains unexplained.

Traditionally, unexplained gaps in mean outcomes have been examined
using decomposition methods (see, e.g., Elder, Goddeeris, and Haider
2010; Fortin, Lemieux, and Firpo 2011; Firpo 2017). As noted by Charles
and Guryan (2011), however, in recent empirical work researchers have
typically focused on a simpler approach of estimating the following model
using ordinary least squares (OLS):

Yi =aBi +Xib+ ei ,ð1Þ

where Yi is the outcome under study, Bi is a binary variable that indicates
race (1 if black, 0 if white), and Xi is a row vector of observed characteris-
tics. Indeed, this simple method has been used in many important articles
on black–white gaps, including Collins and Margo (2001), Charles and
Hurst (2002), Fryer and Levitt (2004, 2006), Lang and Manove (2011),
Bond and Lang (2013), Fryer and Levitt (2013), Fryer, Pager, and
Spenkuch (2013), Rothstein and Wozny (2013), and Elder and Zhou
(2017).

In this article, I borrow from the recent program evaluation literature to
illustrate some important limitations of this approach. As discussed by,
among others, Angrist (1998), Humphreys (2009), and S1oczyński (2018),
OLS estimation of a model analogous to Equation (1) does not recover, in
general, the average treatment effect (ATE), unless the effects of the treat-
ment are homogeneous. These results extend to studies of between-group
differences in economic outcomes. In particular, this article demonstrates
that the interpretation of regression estimates of such differences depends
on the relative sizes of the subpopulations under study (e.g., blacks and
whites), which is a straightforward extension of a recent result in S1oczyński
(2018). While the previous literature on the interpretation of the OLS esti-
mand has focused on treatment effects, in this article I explicitly consider a
framework in which the main variable of interest is an ‘‘attribute,’’ in the
sense of Holland (1986), and thus cannot possibly constitute a ‘‘treatment’’
in any actual experiment. Note, however, that this distinction between
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causal inference and decomposition analysis has implications for how we
label our parameters of interest but not for the algebra of least squares,
which forms the basis of the results in Angrist (1998), Humphreys (2009),
and S1oczyński (2018).

This article concentrates particularly on the following implication of the
result in S1oczyński (2018). If we refer to one of the groups as ‘‘disadvan-
taged’’ (e.g., blacks) and to the other as ‘‘advantaged’’ (e.g., whites), then
regression estimates will be similar to the average loss for disadvantaged
individuals under the condition that they also constitute a numerical minor-
ity. When instead these individuals are a numerical majority—albeit disad-
vantaged—regression estimates will be similar to the average gain for
advantaged individuals.

This relationship between the interpretation of regression estimates and
the relative sizes of subpopulations under study is illustrated empirically in
several applications to racial gaps in test scores (using data from the Early
Childhood Longitudinal Study-Kindergarten [ECLS-K]) and in wages (using
data from the Current Population Survey [CPS], the National Longitudinal
Survey of Youth [NLSY79], and the National Supported Work [NSW]
Demonstration). Compared with the ECLS-K, CPS, and NLSY79 data, in
which the proportion of blacks is relatively low, the interpretation of regres-
sion estimates is very different in the NSW data, in which blacks constitute a
numerical majority. Methodologically, I also develop a new version of the
Oaxaca–Blinder decomposition (Oaxaca 1973; Blinder 1973) in which the
‘‘unexplained component’’ could be interpreted as the average treatment
effect if we decided to invoke the potential outcome model (see, e.g.,
Holland 1986; Imbens and Wooldridge 2009). Since it is preferable to treat
demographic characteristics as attributes, I usually refer to this object as the
average outcome gap—an equivalent parameter that lacks a causal interpreta-
tion. Finally, I also provide treatment-effects reinterpretations of the
Reimers (1983), Cotton (1988), and Fortin (2008) decompositions. Each of
these procedures is easily shown to recover some generally uninteresting
convex combination of conditional average outcome gaps.

Theory

Consider a population divided into two mutually exclusive categories,
indexed by Wi 2 0, 1f g and referred to as the advantaged group (Wi = 1)
and the disadvantaged group (Wi = 0). For each individual i, we also
observe an outcome, Yi , and a row vector of observed characteristics, Xi . In
this case, m1 xð Þ=E Yi Xi = x,Wi = 1jð Þ is the expected outcome of an
advantaged individual with Xi = x and m0 xð Þ=E Yi Xi = x,Wi = 0jð Þ is the
expected outcome of a disadvantaged individual with these characteristics.
Moreover, define the conditional average outcome gap as d xð Þ=m1 xð Þ � m0 xð Þ,
that is, the gap between the expected outcomes of an advantaged and a dis-
advantaged individual with Xi = x. This object is also referred to by Li,
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Morgan, and Zaslavsky (2018) as the conditional average controlled differ-
ence. Dependent on the question we wish to answer, we may average d xð Þ
over the whole population, over the subpopulation of advantaged individu-
als, or over the subpopulation of disadvantaged individuals. Define the aver-
age outcome gap as

dgap =E d Xið Þ½ �;ð2Þ

namely, the expected value of the conditional average outcome gap over
Xi .

1 Within the framework of a potential outcome model, and under addi-
tional assumptions, this parameter is equivalent to the average treatment
effect, tATE . Moreover, define the average gain for advantaged individuals and
the average loss for disadvantaged individuals as

dgain =E d Xið ÞjWi = 1½ � and dloss =E d Xið ÞjWi = 0½ �ð3Þ

respectively. Similarly, under certain conditions, these parameters can be
regarded as equivalents of the average treatment effect on the treated,
tATT , and the average treatment effect on the controls, tATC . It is also the
case that

dgap =P Wi = 1ð Þ � dgain +P Wi = 0ð Þ � dloss :ð4Þ

Thus, a particular weighted average of the average gain for advantaged indi-
viduals and the average loss for disadvantaged individuals is equal to the
average outcome gap.

It should be noted that without further assumptions d xð Þ, dgap, dgain, and
dloss cannot be interpreted as causal or counterfactual; they are also identi-
fied from the data. As demonstrated by Fortin et al. (2011), a counterfactual
interpretation can be justified by a set of three additional assumptions: sim-
ple counterfactual treatment, overlapping support, and conditional inde-
pendence/ignorability. These assumptions are elaborated as follows:

Assumption 1 (Simple Counterfactual Treatment): The observed conditional
mean of advantaged (disadvantaged) individuals represents a counterfactual
conditional mean for disadvantaged (advantaged) individuals.

This assumption restricts the analysis to counterfactuals that are based on
the observed conditional mean for the other group. In other words, the
observed conditional mean of advantaged individuals provides a counterfac-
tual for disadvantaged individuals, and vice versa. It should be noted that
this assumption rules out the presence of general equilibrium effects, and
this might be a substantial restriction in some empirical contexts.

1This notation intentionally mimics Imbens and Wooldridge (2009: 26–27) so that the analogy
between conditional average treatment effects and conditional average outcome gaps becomes clear.
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Assumption 2 (Overlapping Support): Let the support of observed characteristics
Xi be x. For all x in x, 0\P Wi = 1jXi = xð Þ\1.

The overlapping support assumption ensures that no combination of
observed characteristics can be used to identify group membership. This
restriction might be somewhat controversial in the context of black–white
differences in economic outcomes, as it is likely that many black or white
individuals might have few counterparts in the other subpopulation; clearly,
similar problems can also arise in other empirical contexts.

Assumption 3 (Conditional Independence/Ignorability): Denote the unobserved
characteristics as ei . Let Wi ,Xi , eið Þ have a joint distribution. Then, Wi?eijXi , i.e.,
the individual’s unobserved characteristics are independent of group member-
ship, conditional on observed covariates.

This assumption rules out the presence of unobserved characteristics, which
would be correlated with both group membership and outcomes, condi-
tional on observed covariates. For example, this requirement would be vio-
lated in the case of black–white differences in wages if school quality were
correlated with both wages and race (conditional on Xi), while also being
unobserved.2 Indeed, on the one hand, Card and Krueger (1992) argued
that omitting measures of school quality might affect estimates of black–
white wage gaps; on the other hand, Grogger (1996) presented a different
view.

Note that Assumptions 1, 2, and 3 guarantee identification of the aggre-
gate decomposition (Fortin et al. 2011). If we maintain these assumptions,
we can construct a counterfactual distribution, which would be observed if
the outcomes of disadvantaged individuals were determined according to
the conditional mean of advantaged individuals, and vice versa. This coun-
terfactual experiment provides a meaningful interpretation of dgap, dgain ,
and dloss . The average outcome gap, dgap , is equal to the difference between
mean outcomes in two counterfactual distributions. In the first distribution,
the outcomes of all individuals are determined according to the conditional
mean of advantaged individuals; in the second, the outcomes of all individu-
als are determined according to the conditional mean of disadvantaged
individuals. Similarly, the average gain for advantaged individuals, dgain, is
equal to the average gap between 1) actual outcomes of these individuals,
and 2) their counterfactual outcomes, which would be observed if these out-
comes were determined according to the conditional mean of disadvan-
taged individuals. Finally, the average loss for disadvantaged individuals,
dloss , is equal to the average gap between 1) their counterfactual outcomes,
which would be observed if these outcomes were determined according to

2Of course, some form of endogeneity might also arise if unobserved covariates with different correla-
tion patterns exist. However, as demonstrated by Fortin et al. (2011), identification of the aggregate
decomposition is not threatened unless the conditional independence assumption is violated.
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the conditional mean of advantaged individuals, and 2) the actual outcomes
of disadvantaged individuals.

Arguably, dloss might be the most intuitive estimand in many empirical
contexts. For example, in a study of black–white differences in wages, it
seems reasonable to focus on counterfactual wages of black workers, which
would be observed if they were paid according to the wage structure of
white workers. At the same time, the decomposition literature has often
been concerned with both gains and losses (see, e.g., Fortin 2008), and
therefore dgap and dgain might also be interesting. The average outcome
gap—a noncausal equivalent of the average treatment effect—is especially
likely to be the primary object of interest in many empirical studies.
Comparing mean outcomes of all individuals in two counterfactual distribu-
tions that differ only in the choice of the conditional mean used to generate
them is intuitively appealing.

Regression Estimates

As noted previously, researchers often analyze between-group differences in
economic outcomes by means of OLS estimation of the simple linear
model:

Yi =Xig+ dWi + ei :ð5Þ

Now, unlike in Equation (1), the disadvantaged group is the omitted cate-
gory.3 This ensures that the sign of d is consistent with the signs of dgap,
dgain, and dloss .

S1oczyński (2018) studied the interpretation of regression estimates in a
model analogous to Equation (5) in which Wi is instead a binary treatment
variable (1 if treated, 0 if control). His main result is that

d̂OLS = 1� p̂ð Þ � ~tATT + p̂ � ~tATC ;ð6Þ

where d̂OLS is the OLS estimate of the coefficient on Wi in Equation (5),
~tATT = î1 � î0ð Þ+ û1 � û0

� �
� En p̂ Xið ÞjWi = 1½ � and ~tATC = î1 � î0ð Þ+ û1�

�

û0Þ � En p̂ Xið ÞjWi = 0½ � are particular estimates of the average treatment effect
on the treated (ATT) and the average treatment effect on the controls
(ATC); p̂ Xið Þ is the estimated propensity score from the linear probability
model; î1 and î0 are the estimated intercepts and û1 and û0 are the estimated
slope coefficients from group-specific (i.e., conditional on Wi) regressions of

Yi on p̂ Xið Þ; and p̂ =
P̂ Wi = 1ð Þ�Vn p̂ Xið Þ Wi = 1j½ �

P̂ Wi = 1ð Þ�Vn p̂ Xið Þ Wi = 1j½ �+ P̂ Wi = 0ð Þ�Vn p̂ Xið Þ Wi = 0j½ � is increasing

in P̂ Wi = 1ð Þ, the sample proportion of treated individuals.4 Refer to

3In this case, of course, all elements of g other than the intercept are equal to the corresponding ele-
ments of b in Equation (1). Also, g0 =a+b0, where b0 denotes the intercept in Equation (1) and g0

denotes the intercept in Equation (5).
4Also, for a generic random variable Z , En Zi½ �=n�1Pn

i = 1 Zi and Vn Zi½ �= n�1Pn
i = 1 Zi � En Zi½ �ð Þ2.
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S1oczyński (2018) for additional detail, including the derivation of this result,
the intuition behind it, and a number of further extensions and empirical
applications.

In this article, I focus on a setting in which Wi is instead an attribute
(e.g., race or gender). Since this only influences the labeling of various
parameters of interest—but not the algebra of least squares—the result in
S1oczyński (2018) also implies that in the current setting:

d̂OLS = 1� p̂ð Þ � ~dgain + p̂ � ~dloss ;ð7Þ

where p̂ is again increasing in P̂ Wi = 1ð Þ.5
In other words, if there are many disadvantaged individuals (e.g., blacks),

the weight on the average loss for these individuals, p̂, is relatively small. In
a benchmark case where Vn p̂ Xið ÞjWi = 1½ �=Vn p̂ Xið ÞjWi = 0½ �, p̂ is equal to
P̂ Wi = 1ð Þ. What follows,

d̂OLS ’ P̂ Wi = 0ð Þ � ~dgain + P̂ Wi = 1ð Þ � ~dloss :ð8Þ

This result has important implications for the interpretation of d̂OLS .
Consider, for example, the problem of analyzing gender wage gaps.
Intuitively, in a typical study, the proportions of male and female workers
are roughly similar.6 In this case, d̂OLS ’ ~dgap . If instead we are interested in
the average wage loss for women, dloss , we need to use a different method.

Conversely, when we focus on black–white gaps in economic outcomes,
the disadvantaged group (i.e., blacks) also constitutes a numerical minority,
at least in the United States. In this case, d̂OLS ’ ~dloss , and hence the inter-
pretation of regression estimates is substantially different. If we are inter-
ested in estimating the average outcome gap, dgap , a different method must
be chosen.

Of course, blacks do not constitute a numerical minority in all studies of
black–white differences in economic outcomes. Sometimes we might inten-
tionally focus on a population that is predominantly black. For example,
Stiefel, Schwartz, and Ellen (2006) analyzed test score gaps in a big-city
school district. In some countries, such as South Africa, blacks are both dis-
advantaged and a numerical majority (Sherer 2000; Allanson and Atkins
2005). In either of these cases, regression estimates would be similar to
an estimate of the average gain for whites, d̂OLS ’ ~dgain, although this
parameter is less likely to be of direct interest.

5The exact expressions for ~dgain and ~dloss are identical to those for ~tATT and ~tATC , respectively.
Although it might be difficult to conceptualize the ‘‘propensity score’’ for race or other demographic
characteristics, it does not matter for this definition.

6See, for example, Blau and Beller (1988), Weinberger and Kuhn (2010), and Blau and Kahn (2017).
Note, however, that none of these three studies restricts its attention to such simple regression estimates.
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Oaxaca–Blinder Decompositions

The simplest solution to this problem with regression estimates is to allow
the regression coefficients to be different for both groups of interest:

Yi =Xib1 + y1i if Wi = 1 and Yi =Xib0 + y0i if Wi = 0:ð9Þ

Also, E y1i Xi ,Wj i

� �
=E y0i Xi ,Wj i

� �
= 0. In this case, the raw mean differ-

ence in outcomes, draw =E Yi Wi = 1jð Þ � E Yi Wi = 0jð Þ, can be decomposed
as:

draw =E Xi Wi = 1jð Þ � b1 � b0ð Þ+ E Xi Wi = 1jð Þ � E Xi Wi =j 0ð Þ½ � � b0;ð10Þ

where the first element, E Xi Wi = 1jð Þ � b1 � b0ð Þ, reflects intergroup differ-
ences in regression coefficients and is often referred to as the unexplained
component, while the second element, E Xi Wi = 1jð Þ � E Xi Wi = 0jð Þ½ � � b0,
reflects intergroup differences in mean covariate values and is often
referred to as the explained component. Similarly:

draw =E Xi Wi = 0jð Þ � b1 � b0ð Þ+ E Xi Wi = 1jð Þ � E Xi Wi = 0jð Þ½ � � b1:ð11Þ

The difference between Equations (10) and (11) rests on using alternate
comparison coefficients to calculate the explained component as well as
measuring the distance between the regression functions, b1 � b0, for a dif-
ferent set of covariate values. Moreover, Equations (10) and (11) recover
the average gain for advantaged individuals and the average loss for disad-
vantaged individuals, respectively:

dgain =E Xi Wi = 1jð Þ � b1 � b0ð Þ and dloss =E Xi Wi = 0jð Þ � b1 � b0ð Þ:ð12Þ

Traditionally, the decomposition literature regards the choice of the com-
parison coefficients in this context—in other words, the choice between
Equations (10) and (11)—as necessarily ambiguous. A number of studies
have suggested alternative solutions to this comparison group choice prob-
lem. Such an approach is often referred to as ‘‘generalized’’ Oaxaca–
Blinder, and it involves an alternative decomposition:

draw =E Xi Wi = 1jð Þ � b1 � bcð Þ+E Xi Wi = 0jð Þ � bc � b0ð Þ
+ E Xi Wi = 1jð Þ � E Xi Wi = 0jð Þ½ � � bc ;

ð13Þ

where bc is the set of comparison coefficients. In the context of decom-
posing differences in wages, these coefficients are typically referred to as
the ‘‘nondiscriminatory’’ or ‘‘competitive’’ wage structure. Note that if
bc =b1 =b0, then there is no unexplained component, because b1 =b0
implies that both groups have the same conditional mean.

As noted previously, several papers have suggested alternative compari-
son coefficients for Equation (13). These coefficients are often of the form
bc =l � b1 + 1� lð Þ � b0, where l 2 0, 1½ � is a weighting factor. If l= 0,
then the disadvantaged group is used as reference, bc =b0, and Equation
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(13) simplifies to Equation (10). Similarly, if l= 1, then the advantaged
group is used as reference, bc =b1, and Equation (13) simplifies to
Equation (11). Alternatively, Reimers (1983) suggested l= 1

2 and Cotton
(1988) suggested l=P Wi = 1ð Þ, the proportion of advantaged individuals.
Moreover, in the context of wage gaps, Neumark (1988) developed a simple
model of Beckerian discrimination and showed that identification of the
nondiscriminatory wage structure is ensured, for example, in a case in
which the utility function of the representative producer is homogeneous of
degree zero with respect to the labor inputs of advantaged and disadvan-
taged workers. Such a wage structure can be approximated by regression
coefficients in a pooled model that excludes the indicator for group mem-
bership (Neumark 1988). Although this solution constitutes the most popu-
lar alternative to the basic decomposition (Weichselbaumer and Winter-
Ebmer 2005), it has been criticized by both Fortin (2008) and Elder,
Goddeeris, and Haider (2010). They argued that exclusion of the indicator
for group membership can bias coefficients on other covariates, which also
affects the unexplained component. Therefore, Fortin (2008) proposed
using—as the comparison wage structure—the coefficients from a pooled
model that includes this variable, such as b in Equation (1) or g in
Equation (5). By construction, the unexplained component in such a
decomposition is equal to the coefficient on the indicator for group mem-
bership in the corresponding pooled model, such as a in Equation (1) or d

in Equation (5).

Recovering the Average Outcome Gap

A number of studies (Barsky et al. 2002; Black, Haviland, Sanders, and
Taylor 2006, 2008; Melly 2006; Fortin et al. 2011; Kline 2011) have noted
that the unexplained component in Equation (10) can be interpreted as
tATT , as long as a potential outcome model is invoked. In a noncausal
framework, the basic decomposition recovers dgain or dloss , as in Equation
(12). It is natural to ask whether there exists an alternative decomposition,
perhaps a version of Equation (13), such that its unexplained component
can be interpreted as tATE or dgap. In other words, we wish to determine
whether a particular choice of bc , or maybe of l, implies that

dgap =E Xið Þ � b1 � b0ð Þ=E Xi Wi = 1jð Þ � b1 � bcð Þ
+E Xi Wi = 0jð Þ � bc � b0ð Þ:

ð14Þ

In fact, this result follows from the choice of l=P Wi = 0ð Þ, as stated in
Proposition 1.

Proposition 1 (Oaxaca–Blinder and the Average Outcome Gap): The unex-
plained component of the Oaxaca–Blinder decomposition in Equation (13) is
equal to the average outcome gap, dgap, if bc =P Wi = 0ð Þ � b1 +P Wi = 1ð Þ � b0.
Then, Equation (13) takes the form
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draw = dgap + E Xi Wi = 1jð Þ � E Xi Wi = 0jð Þ½ � � bc :

A proof of Proposition 1 follows immediately from simple algebra. Perhaps
surprisingly, the choice of l=P Wi = 0ð Þ implies that the proportion of
advantaged individuals is used to weight the coefficients for disadvantaged
individuals, and that the proportion of disadvantaged individuals is used to
weight the coefficients for advantaged individuals. Although this weighting
scheme may at first appear counterintuitive, both sets of coefficients play a
clearly defined role in this decomposition—as the counterfactual for the
other group (Assumption 1). This is why more weight should be put on the
coefficients of the smaller group, which are used to provide the counterfac-
tual for the larger one.7

Interestingly, this alternative decomposition is equivalent to a flexible lin-
ear regression model for the average treatment effect, discussed in Imbens
and Wooldridge (2009) and Wooldridge (2010). If Wi now denotes the
treatment indicator, tATE can also be recovered as the coefficient on Wi in
the regression of Yi on 1, Wi , Xi , and Wi � Xi � E Xið Þ½ �. As noted by Imbens
and Wooldridge (2009), this model implies that

tATE =E Yi Wi = 1jð Þ � E Yi Wi = 0jð Þ � E Xi Wi = 1jð Þ � E Xi Wi = 0jð Þ½ ��
P Wi = 0ð Þ � b1 +P Wi = 1ð Þ � b0½ �;

ð15Þ

which is equivalent to the decomposition in Proposition 1. Similarly, the
unexplained component of the decomposition in Equation (10) is equal to
the coefficient on Wi in the regression of Yi on 1, Wi , Xi , and
Wi � Xi � E Xi Wi = 1jð Þ½ �, and the unexplained component of the decompo-
sition in Equation (11) is equal to the coefficient on Wi in the regression of
Yi on 1, Wi , Xi , and Wi � Xi � E Xi Wi = 0jð Þ½ �.

Several recent articles have criticized the dependence of traditional
decomposition methods on linear conditional means (Barsky et al. 2002;
Frölich 2007; Ñopo 2008). Thus, it is useful to clarify that the main insight
underlying Proposition 1 is unrelated to the linearity assumptions in
Equation (9). If we write the counterfactual conditional mean as
mc xð Þ=l � m1 xð Þ+ 1� lð Þ � m0 xð Þ, we can always decompose draw as

draw = 1� lð Þ � E d Xið Þ Wi = 1j½ �+ l � E d Xið Þ Wi = 0j½ �
+ E mc Xið Þ Wi = 1j½ � � E mc Xið Þ Wi = 0j½ �f g:

ð16Þ

As before, the choice of l=P Wi = 0ð Þ and, equivalently, mc xð Þ=P Wi =ð
0Þ � m1 xð Þ+P Wi = 1ð Þ � m0 xð Þ ensures that dgap = 1� lð Þ� E d Xið Þ Wi = 1j½ �
+l � E d Xið Þ Wi = 0j½ �=P Wi = 1ð Þ � dgain +P Wi = 0ð Þ � dloss . Clearly, if one
group is ‘‘small’’ and the other is ‘‘large,’’ we need to put a ‘‘large’’ weight

7Note that Duncan and Leigh (1985) used a similar decomposition in an application to union wage
premiums. Oaxaca and Ransom (1988), however, criticized this approach as being ‘‘not a very intuitive
procedure.’’
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on the conditional mean of the ‘‘small’’ group, as it constitutes the counter-
factual conditional mean for the ‘‘large’’ one.

Estimation of dgap , dgain, and dloss also does not require any linearity
assumptions, even though they underlie Equations (12) and (14). In gen-
eral, any of the standard estimators of tATE and tATT under conditional
independence can be used to estimate dgap and dgain/dloss , respectively. We
can probably assume that the better an estimator is for various average treat-
ment effects, the better it also is for various parameters based on condi-
tional average outcome gaps (see, e.g., Fortin et al. 2011). Indeed, several
recent studies have used reweighting (Barsky et al. 2002), other methods
based on the propensity score (Frölich 2007), matching on covariates
(Black et al. 2006, 2008; Ñopo 2008), and regression trees (Mora 2008) to
study between-group differences in various outcomes.

Interpreting the Explained Component

Traditionally, decomposition methods have been used to provide estimates
of both the unexplained and explained components. The interpretation of
the explained components in Equations (10) and (11) is well known.
Similarly, it might be useful to clarify the interpretation of the explained
component in Proposition 1, E Xi Wi = 1jð Þ � E Xi Wi = 0jð Þ½ � � bc , and
Equation (16), E mc Xið Þ Wi = 1j½ � � E mc Xið Þ Wi = 0j½ �. After simple algebra, it
can be shown that if mc xð Þ=P Wi = 0ð Þ � m1 xð Þ+P Wi = 1ð Þ � m0 xð Þ, then

E mc Xið Þ Wi = 1j½ � � E mc Xið Þ Wi = 0j½ �=E m1 Xið Þ Wi = 1j½ �
� E m1 Xið Þ½ �+E m0 Xið Þ½ � � E m0 Xið Þ Wi = 0j½ �:

ð17Þ

We can easily interpret both elements of this explained component. The
first element, E m1 Xið Þ Wi = 1j½ � � E m1 Xið Þ½ �, is equal to the difference
between actual mean outcomes of advantaged individuals and counterfac-
tual mean outcomes that would be observed if the outcomes of the whole
population had been determined according to the conditional mean of
these individuals. This parameter is also equal to the amount by which
actual mean outcomes of advantaged individuals would decrease if their
characteristics were the same as those of the whole population. Whenever
advantaged individuals have ‘‘better’’ characteristics than disadvantaged
individuals, it will be the case that E m1 Xið Þ Wi = 1j½ �.E m1 Xið Þ½ �. Therefore,
this element of the explained component will contribute positively to the
raw mean difference in outcomes. Similarly, the second element of this
explained component, E m0 Xið Þ½ � � E m0 Xið Þ Wi = 0j½ �, can be interpreted as
the difference between counterfactual mean outcomes that would be
observed if the outcomes of the whole population had been determined
according to the conditional mean of disadvantaged individuals, and their
actual mean outcomes. This parameter is also equal to the amount by which
actual mean outcomes of disadvantaged individuals would increase if their
characteristics were the same as those of the whole population. Again, if
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advantaged individuals have ‘‘better’’ characteristics than disadvantaged
individuals, then E m0 Xið Þ½ �.E m0 Xið Þ Wi = 0j½ �, and, therefore, this element
of the explained component will also contribute positively to the raw mean
difference in outcomes. This interpretation is analogous to that of the
explained component in other versions of the Oaxaca–Blinder decomposi-
tion, but in this case we do not need to interpret the counterfactual condi-
tional mean as ‘‘nondiscriminatory’’ or ‘‘competitive.’’

Of course, the same interpretation holds in the case of the explained
component in Proposition 1, E Xi Wi = 1jð Þ � E Xi Wi = 0jð Þ½ � � bc . Namely, if
bc =P Wi = 0ð Þ � b1 +P Wi = 1ð Þ � b0, then this component takes the form

E Xi Wi = 1jð Þ � E Xi Wi = 0jð Þ½ � � bc = E Xi Wi = 1jð Þ � E Xið Þ½ � � b1

+ E Xið Þ � E Xi Wi = 0jð Þ½ � � b0;

ð18Þ

which is a linear special case of Equation (17). Fortin et al. (2011) also
briefly discussed a similar explained component.

Reinterpreting Reimers (1983), Cotton (1988), and Fortin (2008)

Finally, the logic of Proposition 1 applies also to several versions of the
Oaxaca–Blinder decomposition in Reimers (1983), Cotton (1988), and
Fortin (2008). We can easily verify that 1) the unexplained component of
the Reimers (1983) decomposition is equal to the arithmetic mean of dgain

and dloss ; 2) the unexplained component of the Cotton (1988) decomposi-
tion is equal to a weighted mean of dgain and dloss , with reversed weights
attached to both these parameters (i.e., the proportion of disadvantaged
individuals is used to weight dgain and the proportion of advantaged individ-
uals is used to weight dloss); and 3) the unexplained component of the
Fortin (2008) decomposition is approximately equal to the same parameter.
This last interpretation follows from the earlier discussion of regression esti-
mates of between-group differences in economic outcomes. Elder et al.
(2010) observed that regression estimates and the unexplained component
of the Cotton (1988) decomposition were generally similar. Because of this
similarity, they recommended focusing on regression estimates in studies of
between-group outcome gaps. In this article, I demonstrate that this similar-
ity is not necessarily an advantage.

To be clear, these interpretations of the Reimers (1983), Cotton (1988),
and Fortin (2008) decompositions assume simple counterfactual treatment
(Assumption 1), whereas this assumption is not invoked in any of these stud-
ies. More precisely, each tries to account for the presence of general equili-
brium effects, which are ruled out by Assumption 1, and to derive a
counterfactual conditional mean, which would be observed—in the context
of wage gaps—if discrimination ceased to exist. It is very difficult, however,
to correctly guess the form of this ‘‘nondiscriminatory’’ or ‘‘competitive’’
wage structure—and Reimers (1983), Cotton (1988), and Fortin (2008) did
not offer any theoretical basis to rationalize their choices. Here it might be
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easier to invoke the assumption of simple counterfactual treatment instead
of relying on the general equilibrium approach. In this case, the Reimers
(1983), Cotton (1988), and Fortin (2008) decompositions would be
problematic.

Black–White Differences in Test Scores and Wages

Clearly, the interpretation of regression estimates of black–white gaps in
economic outcomes depends on the relative sizes of black and white sub-
samples. Still, OLS estimation of the model in Equation (5) constitutes a
standard approach in empirical work (Charles and Guryan 2011). While we
can always solve this problem using a variety of semi- and nonparametric
methods, it might be sufficient to use one of several versions of the Oaxaca–
Blinder decomposition. To estimate dgain or dloss we need to choose one of
the basic decompositions (Oaxaca 1973; Blinder 1973). If instead we focus
on dgap , then we need to choose the new decomposition, as derived in
Proposition 1.

These methodological considerations will be illustrated in various empiri-
cal applications to black–white differences in test scores and wages.
Whenever blacks are a numerical minority, regression estimates will be simi-
lar to their average loss. When, however, blacks become a disadvantaged
majority, regression estimates will mimic the average gain for whites. Yet,
the estimates based on decomposition methods will always have the desired
interpretation: d̂gap , d̂gain, or d̂loss .

Black–White Test Score Gaps in ECLS-K

Following Neal and Johnson (1996), labor economists widely agree that a
substantial portion of the black–white wage gap is a consequence of differ-
ences in premarket factors. Consequently, in an attempt to explain the
emergence of this gap, many researchers have focused on education and
cognitive development in children. An example is Fryer and Levitt’s (2004)
influential study of the black–white test score gap in kindergarten and first
grade. This research concluded that the gap among incoming kindergart-
ners practically disappeared when controlling for a small number of covari-
ates. It appeared, however, to re-emerge during the first two years of school.

Recent follow-up studies by Bond and Lang (2013) and Penney (2017)
have focused on the (lack of) robustness of these conclusions related to the
ordinality of test scores. More precisely, Fryer and Levitt (2004) have treated
test scores as interval scales, even though this is inappropriate and any
monotonic transformation of the test score scale is also a valid scale. On the
one hand, using several such transformations, Bond and Lang (2013) have
cast doubt on many of the conclusions in Fryer and Levitt (2004). On the
other hand, Penney (2017) considered a normalization of test scores that is
invariant to monotonic transformations; his preferred estimates were very
similar to regression estimates in Fryer and Levitt (2004). In this article, I
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ignore the issue of ordinality of test scores and focus on the interpretation
of regression estimates of the black–white test score gap as a weighted aver-
age of the average gain for whites and the average loss for blacks. In this
sense, my analysis should be treated as an illustration of a different metho-
dological issue, rather than a stand-alone contribution to the debate on
black–white test score gaps.

All of these previous papers—namely, Fryer and Levitt (2004), Bond and
Lang (2013), and Penney (2017)—are based on data from the ECLS-K. The
sample included more than 20,000 children who entered kindergarten in
1998. The main outcomes of interest are standardized test scores in math and
reading. I borrow the sample and covariate selections from Penney (2017),
who followed Fryer and Levitt (2004). However, unlike Penney (2017), I
restrict my attention to test scores in the fall and spring of kindergarten and
drop individuals whose race is coded as Hispanic, Asian, or other.

Table 1 reports regression estimates of the black–white test score gap and
supplements them with estimates of dgap, dgain , and dloss . Blacks are a clear
minority in this sample, and they account for 19% of all observations.
Hence, in line with Equation (8), d̂OLS is relatively similar to the estimated
average loss for blacks. These results suggest that in the fall of kindergarten
the black–white test score gap is quite small; in fact, blacks enjoy a slight
advantage in reading. By the spring of kindergarten, the relative position of
blacks worsens: the math gap more than doubles and their advantage in
reading shrinks.8

At the same time, the minority status of blacks has an additional conse-
quence. Namely, the estimated average gaps and average gains for whites
are always very similar. In the case of math test scores, they are also quite
different from both d̂OLS and d̂loss . The average gap in math is 42% to 107%
larger than suggested by d̂OLS . The average gap in reading is more similar to
d̂OLS ; however, it also suggests a smaller black advantage in the fall of
kindergarten.

To be clear, it is not unreasonable to believe that dloss is the most interesting
parameter in this empirical context. It is natural to ask whether the test scores
of blacks are significantly different from those of similar whites. However, the
fact that d̂loss is relatively well approximated by d̂OLS is purely a virtue of the
small proportion of blacks in the ECLS-K data or, more generally, in the US
population. Moreover, if we decided to focus on dgap, which is also a very useful
measure, we would conclude that black disadvantage in kindergarten math
scores is substantially larger than suggested by Fryer and Levitt (2004).

Black–White Wage Gaps in CPS

Many studies have documented that the trend toward black–white wage
convergence stopped in the mid-1970s or around 1980 (see, e.g., Grogger

8Again, given the results in Bond and Lang (2013), such statements need to be treated with caution.
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1996; Chay and Lee 2000; Juhn 2003; Bayer and Charles 2018). While some
research has also revealed a sharp decline in the black–white wage gap in
the 1990s (Juhn 2003), other studies have not (Elder et al. 2010).
Moreover, several recent contributions have concluded that the current
magnitude of the racial wage gap in the United States is the largest in sev-
eral decades (see, e.g., Hirsch and Winters 2014; Bayer and Charles 2018).

In this article, as in Juhn (2003) and Elder et al. (2010), I focus on data
from the March CPS, which are distributed by Flood, King, Ruggles, and
Warren (2017). I also borrow the sample and covariate selections from
Elder et al. (2010) and extend their analysis by 10 years, from 2008 to 2017.
Thus, I study a subsample of full-time, full-year working males; this category
is defined as those participants who are at least 18 years old, have earned
non-zero wage or salary income, and have worked more than 40 weeks a
year and 30 hours in a typical week. Following Elder et al. (2010), I also
restrict my attention to individuals whose race is coded as either black or
white. The outcome variable of interest is the log hourly wage, and the
hourly wage is measured as annual earnings divided by annual hours. The
set of control variables is relatively sparse and is listed in Table 2.

Table 2 and Figure 1 report the estimates of d, dgap, dgain, and dloss for
each year between 2000 and 2017. It follows immediately that these results
corroborate the earlier conclusion that black–white wage convergence in

Table 1. Black–White Test Score Gaps in ECLS-K

Math test scores

Time of interview d̂OLS d̂gap d̂gain d̂loss P̂ Wi= 1ð Þ N

Fall kindergarten 0.076*** 0.157*** 0.181*** 0.051** 0.811 11,826
(0.021) (0.031) (0.036) (0.021)

Spring kindergarten 0.166*** 0.235*** 0.255*** 0.145*** 0.813 11,566
(0.022) (0.034) (0.039) (0.023)

Reading test scores

Time of interview d̂OLS d̂gap d̂gain d̂loss P̂ Wi= 1ð Þ N

Fall kindergarten –0.080*** –0.064* –0.060 –0.085*** 0.811 11,826
(0.021) (0.036) (0.042) (0.021)

Spring kindergarten –0.027 –0.035 –0.038 –0.023 0.812 11,573
(0.022) (0.037) (0.042) (0.022)

Notes: See also Fryer and Levitt (2004), Bond and Lang (2013), and Penney (2017) for more details on
these data. All regressions control for gender, age, birth weight, participation in the Special
Supplemental Nutrition Program for Women, Infants, and Children (WIC), socioeconomic status, the
number of books in the home and its square, and two indicators for mother’s age at first birth
(teenager and age 30 or over). d̂OLS is a least squares estimate of d in Equation (5). d̂gap, d̂gain, and d̂loss
are based on least squares and sample analogue estimation of Equations (12) and (14). P̂ Wi= 1ð Þ is
the sample proportion of whites. N is the sample size. Huber–White standard errors are in parentheses.
Positive values reflect black disadvantage. ECLS-K, Early Childhood Longitudinal Study-Kindergarten.
*Statistically significant at the .10 level; **at the .05 level; ***at the .01 level.
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the United States came to a halt. In fact, all measures of the black–white
wage gap were slightly larger in magnitude in 2017 than around 2000.

It should also be noted that, generally speaking, the differences between
the average loss for blacks and the average gain for whites are rather small

Table 2. Black–White Wage Gaps in the Current Population Survey (CPS)

Log hourly wages

Year d̂OLS d̂gap d̂gain d̂loss P̂ Wi= 1ð Þ N

2000 0.079*** 0.086*** 0.086*** 0.079*** 0.918 25,924
(0.013) (0.014) (0.014) (0.013)

2001 0.109*** 0.126*** 0.127*** 0.108*** 0.902 40,949
(0.009) (0.011) (0.011) (0.009)

2002 0.107*** 0.126*** 0.128*** 0.105*** 0.902 40,215
(0.010) (0.012) (0.012) (0.010)

2003 0.124*** 0.146*** 0.148*** 0.122*** 0.907 38,836
(0.011) (0.012) (0.012) (0.011)

2004 0.109*** 0.136*** 0.139*** 0.107*** 0.908 37,825
(0.010) (0.012) (0.012) (0.010)

2005 0.118*** 0.110*** 0.109*** 0.119*** 0.906 37,430
(0.011) (0.011) (0.012) (0.011)

2006 0.113*** 0.133*** 0.135*** 0.110*** 0.910 37,697
(0.010) (0.013) (0.013) (0.010)

2007 0.112*** 0.124*** 0.125*** 0.110*** 0.905 37,785
(0.010) (0.010) (0.010) (0.010)

2008 0.118*** 0.130*** 0.131*** 0.117*** 0.902 37,437
(0.009) (0.010) (0.010) (0.009)

2009 0.112*** 0.119*** 0.120*** 0.111*** 0.902 36,402
(0.011) (0.012) (0.012) (0.011)

2010 0.117*** 0.116*** 0.116*** 0.116*** 0.899 34,262
(0.011) (0.013) (0.013) (0.011)

2011 0.124*** 0.138*** 0.140*** 0.122*** 0.902 33,457
(0.010) (0.011) (0.011) (0.010)

2012 0.115*** 0.127*** 0.128*** 0.113*** 0.904 33,276
(0.011) (0.012) (0.012) (0.011)

2013 0.131*** 0.138*** 0.139*** 0.129*** 0.903 33,928
(0.011) (0.011) (0.011) (0.011)

2014 0.127*** 0.131*** 0.132*** 0.126*** 0.901 33,945
(0.012) (0.013) (0.013) (0.012)

2015 0.112*** 0.116*** 0.117*** 0.111*** 0.894 34,060
(0.010) (0.011) (0.011) (0.010)

2016 0.129*** 0.136*** 0.137*** 0.128*** 0.891 31,895
(0.011) (0.012) (0.012) (0.011)

2017 0.136*** 0.131*** 0.131*** 0.136*** 0.892 32,391
(0.011) (0.011) (0.011) (0.011)

Notes: See also Elder et al. (2010) for more details on these data. All regressions control for a quartic in
age, four education categories (no high school diploma, high school diploma either obtained or
unclear, three years of college or less, and four years of college or more), and 12 ‘‘major occupation’’
categories listed in the CPS. d̂OLS is a least squares estimate of d in Equation (5). d̂gap, d̂gain, and d̂loss are
based on least squares and sample analogue estimation of Equations (12) and (14). P̂ Wi= 1ð Þ is the
sample proportion of whites. N is the sample size. Huber–White standard errors are in parentheses.
Positive values reflect black disadvantage.
*Statistically significant at the .10 level; **at the .05 level; ***at the .01 level.
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in the CPS data, and hence d̂OLS is also of the same order of magnitude.
Still, the average loss for blacks is typically smaller than the average gain for
whites.9 Because blacks are again a numerical minority, as they account for
8% to 11% of all observations, this translates into a very consistent differen-
tial between d̂OLS and d̂gap. Namely, regression estimates understate the aver-
age wage gap in most years. As expected, d̂OLS is generally indistinguishable
from the average loss for blacks; d̂gap and d̂gain are also practically
identical—and larger than d̂OLS .

Black–White Wage Gaps in NLSY79

A common concern about the CPS data is that it lacks information about
some important determinants of wages. In particular, Neal and Johnson
(1996) demonstrated that the black–white wage gap nearly disappeared
after controlling for age and performance on the Armed Forces Qualifying
Test (AFQT). Unsurprisingly, this measure of ability is unavailable in most
microeconomic data sets, including CPS. It is recorded, however, as part of
the NLSY79, which is a panel study of individuals born between 1957 and

Figure 1. Black–White Wage Gaps in the Current Population Survey (CPS)

Notes: Numbers are based on point estimates reported in Table 2. Positive values reflect black disadvan-
tage. OLS, ordinary least squares.

9At first, this finding might seem inconsistent with the stylized fact reported in Lang and Lehmann
(2012) that black–white wage gaps decrease with education, to the extent that no significant wage differ-
ences occur between high-skilled blacks and high-skilled whites. If this is true, then we should expect
dgain to be relatively small, as whites are, on average, more highly educated than blacks. A detailed analy-
sis of this problem, however, is beyond the scope of this article.
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1964 that began in 1979 and which was also the source of data in Neal and
Johnson (1996).

More recently, Lang and Manove (2011) built a model of educational
attainment predicting that, conditional on ability (as proxied by AFQT
scores), blacks should receive more education than whites. On the basis of
this model, whose predictions are broadly consistent with the NLSY79 data,
Lang and Manove (2011) recommended that one should control for both
AFQT scores and education when studying black–white differences in
wages. Interestingly, when Lang and Manove (2011) augmented the specifi-
cations of Neal and Johnson (1996) with education, a substantial black–
white wage gap re-emerged.

In this article, I borrow the sample and covariate selections from Lang
and Manove (2011: table 5). Because I focus entirely on the black–white
gap, I also drop all Hispanics. I study log hourly wages of black and white
men from the 1996, 1998, and 2000 waves of the survey. The list of control
variables is reported in Table 3, together with regression estimates of the
black–white wage gap as well as estimates of dgap, dgain, and dloss . As in previ-
ous applications, the proportion of blacks in the NLSY79 data is small; they
account for 9% to 14% of all observations. Thus, in line with Equation (8),
d̂OLS is always very similar to the average loss for blacks. Similarly, d̂gap and

Table 3. Black–White Wage Gaps in NLSY79

Log hourly wages

Control variables d̂OLS d̂gap d̂gain d̂loss P̂ Wi= 1ð Þ N

Age 0.362*** 0.363*** 0.363*** 0.362*** 0.857 3,119
(0.021) (0.021) (0.021) (0.021)

Age, AFQT 0.088*** 0.054* 0.047 0.096*** 0.857 3,119
(0.022) (0.031) (0.035) (0.023)

Age, AFQT, education 0.149*** 0.120*** 0.115*** 0.151*** 0.857 3,119
(0.022) (0.029) (0.031) (0.023)

Age, AFQT, other controls 0.052 0.012 0.008 0.056* 0.910 1,586
(0.033) (0.047) (0.050) (0.034)

Age, AFQT, education,
other controls

0.104*** 0.085** 0.083* 0.103*** 0.910 1,586
(0.033) (0.043) (0.046) (0.034)

Notes: See also Lang and Manove (2011) for more details on these data. ‘‘Hourly wages’’ correspond to
mean adjusted wages from the 1996, 1998, and 2000 waves of the survey. ‘‘AFQT’’ includes the AFQT
score and its square. ‘‘Other controls’’ include school inputs and family background. School inputs
include log of enrollment, log number of teachers, log number of guidance counselors, log number of
library books, proportion of teachers with MA/PhD, proportion of teachers who left during the year, and
average teacher salary. Family background includes mother’s education, father’s education, number of
siblings, and indicators for whether the respondent was born in the United States, lived in the US at age
14, lived in an urban area at age 14, whether his mother was born in the US, and whether his father was
born in the US. d̂OLS is a least squares estimate of d in Equation (5). d̂gap, d̂gain, and d̂loss are based on
least squares and sample analogue estimation of Equations (12) and (14). P̂ Wi= 1ð Þ is the sample
proportion of whites. N is the sample size. Huber–White standard errors are in parentheses. Positive
values reflect black disadvantage. All estimation procedures follow Lang and Manove (2011) in using
sampling weights. AFQT, Armed Forces Qualifying Test; NLSY79, National Longitudinal Survey of Youth.
*Statistically significant at the .10 level; **at the .05 level; ***at the .01 level.
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d̂gain are also hardly distinguishable. Finally, of note is that, unlike in CPS,
the average loss for blacks is usually larger than the average gain for whites.

The second and fourth rows of Table 3 correspond to the specifications
of Neal and Johnson (1996). It turns out that focusing on the average wage
gap, as opposed to regression estimates, would have strengthened their con-
clusions. Even though d̂OLS and d̂loss are already quite small in the second
and fourth rows, d̂gap and d̂gain are even smaller; in fact, they are extremely
close to zero, and not statistically significant, in the fourth row. In other
words, a moderately large set of control variables—including age, AFQT
scores, school inputs, and family background—shrinks the average black–
white wage gap to (practically) zero.

At the same time, the main conclusion of Lang and Manove (2011) still
holds true. When we also control for education, as in the third and fifth
rows of Table 3, all measures of the black–white wage gap become substan-
tially larger. Still, d̂gap is smaller than the regression estimates, which are sim-
ilar to those reported in Lang and Manove (2011), but they are both larger
than the estimates in the second and fourth rows.

Black–White Wage Gaps in NSW

My results on black–white differences in ECLS-K, CPS, and NLSY79 data
share an essential feature: in each case, d̂OLS provides a good approximation
to d̂loss . At first, this might seem like a useful property of d̂OLS , as dloss is defi-
nitely a very interesting parameter. However, as explained earlier, this rela-
tionship between d̂OLS and d̂loss is purely an artifact of the small proportions
of blacks represented in ECLS-K, CPS, and NLSY79 data. If instead we focus
on an empirical context in which blacks constitute a numerical majority,
this supposedly useful property will disappear.

Following LaLonde (1986), Dehejia and Wahba (1999), and Smith and
Todd (2005), many studies have used the data on men from the NSW
Demonstration, together with non-experimental data sets constructed by
LaLonde (1986), to compare the effectiveness of various identification
strategies and estimation methods for average treatment effects. In short,
NSW was a US work experience program that operated in the mid-1970s
and that randomized treatment assignment among eligible participants.
This program served a highly disadvantaged population whose members
were disproportionately black (Smith and Todd 2005).

As noted previously, these data are typically used to study the effects of
the NSW program itself. There is little reason, however, why they should
not be used to study black–white wage gaps, although of course the results
may not reflect the magnitudes of these gaps in the whole US population. I
analyze the original data on the experimental treatment and control
groups, as in LaLonde (1986). To be consistent with the previous empirical
applications, I focus on log wages and exclude Hispanics; these two restric-
tions reduce the sample size to 460 individuals, 87% of whom are black.
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Table 4 reports the estimates of d, dgap , dgain , and dloss ; it also includes the
list of control variables. In general, the differences between the average loss
for blacks and the average gain for whites are large. This statement is espe-
cially true for the first and second rows of Table 4, where we control for a
number of baseline covariates (both rows) and employment status in 1975
(second row only).

Unlike previously, the average loss for blacks is not approximated by d̂OLS

in any useful way. On the contrary, regression estimates, d̂OLS , are always rel-
atively similar to the average gain for whites. This is, however, a clear impli-
cation of Equation (8). When one of two groups is large and the other is
small, d̂OLS is similar to the ‘‘effect’’ on the smaller group. The difference
between d̂OLS and d̂loss (and also d̂gap) is particularly striking in the second
row of Table 4. While the regression estimate suggests a black–white wage
gap of 12.7 log points (which is also not significantly different from zero),
the estimated average loss for blacks is 28.2 log points and the estimated
average gap is 25.8 log points, more than twice as large as d̂OLS .10 These dif-
ferences are very substantial. When we additionally control for a number of
higher-order terms in the third row of Table 4, these differences become
smaller, although d̂OLS (d̂gap) remains similar to d̂gain (d̂loss).

Table 4. Black–White Wage Gaps in the
National Supported Work (NSW) Demonstration

Log wages in 1978

Control variables d̂OLS d̂gap d̂gain d̂loss P̂ Wi= 1ð Þ N

Baseline controls 0.121 0.229* 0.098 0.249* 0.130 460
(0.134) (0.129) (0.149) (0.131)

+ Nonemployment 0.127 0.258** 0.102 0.282** 0.130 460
(0.134) (0.130) (0.150) (0.133)

+ Higher-order terms 0.138 0.188 0.123 0.198 0.130 460
(0.138) (0.145) (0.158) (0.150)

Notes: See also LaLonde (1986), Dehejia and Wahba (1999), and Smith and Todd (2005) for more
details on these data. ‘‘Baseline controls’’ include age, education, earnings in 1975, and indicators for
whether married, whether a high school dropout, and whether treated. ‘‘Nonemployment’’ includes an
indicator for whether had zero earnings in 1975. ‘‘Higher-order terms’’ include age squared, age
cubed, education squared, and earnings in 1975 squared. d̂OLS is a least squares estimate of d in
Equation (5). d̂gap, d̂gain, and d̂loss are based on least squares and sample analogue estimation of
Equations (12) and (14). P̂ Wi= 1ð Þ is the sample proportion of whites. N is the sample size. Huber–
White standard errors are in parentheses. Positive values reflect black disadvantage.
*Statistically significant at the .10 level; **at the .05 level; ***at the .01 level.

10In an earlier working paper version of this article, I focused on the subset of the experimental treat-
ment and control groups constructed by Dehejia and Wahba (1999); I also did not exclude Hispanics
from the sample. Many of the estimates were quite different than currently reported, although the main
message remains unchanged: With a large proportion of blacks, d̂OLS is relatively different from d̂gap and
d̂loss but similar to d̂gain .
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Conclusion

In this article, I have borrowed a recent result from the program evaluation
literature to demonstrate that the interpretation of regression estimates of
between-group differences in economic outcomes necessarily depends on
the relative proportions of these groups. If the disadvantaged group is also a
numerical minority, as is often the case with blacks, regression estimates will
be similar to the average loss for this group. I have demonstrated the
empirical relevance of this prediction in applications to black–white test
score gaps in ECLS-K data and black–white wage gaps in CPS and NLSY79
data.

Sometimes, however, the disadvantaged group does not constitute a
numerical minority, in which case regression estimates will not approximate
the average loss for this group. When the majority group is, in fact, disad-
vantaged—say, blacks in an urban school district, in South Africa, or in
NSW data—regression estimates will be similar to the average gain for
advantaged individuals. Unfortunately, in most applications, this parameter
is also less likely to be of direct interest.

In an intermediate case, where the proportions of both groups are
similar—which is to be expected, for example, in a typical study of gender
wage gaps—regression estimates will be similar to the average outcome gap.
There are reasons to believe that this is an interesting parameter, as it is
equal to the difference between mean outcomes in two counterfactual dis-
tributions. In the first distribution, outcomes of both groups are determined
according to the conditional mean of advantaged individuals. In the second
distribution, all outcomes are determined using the conditional mean of
disadvantaged individuals.

Of course, instead of relying on regression estimates, researchers may
prefer to explicitly choose their parameter of interest. While its estimation
would be easy to implement semi- or nonparametrically, following a more
traditional approach of using parametric decomposition methods is also
possible. If we wish to estimate the average gain for advantaged individuals
or the average loss for disadvantaged individuals, we need to use one of the
most basic versions of the Oaxaca–Blinder decomposition (Oaxaca 1973;
Blinder 1973). If instead we are interested in the average outcome gap, we
need to apply the main contribution of this article: a new decomposition
whose unexplained component is equal to this parameter. Interestingly,
under a particular conditional independence assumption, this object is also
equivalent to the average treatment effect.

These decompositions and the framework of this article can be relevant
for public policy. For example, Blau and Kahn (2017: 800) explained, with-
out using this particular notation, that m1 Xið Þ corresponds to the wage a
particular woman would receive if her employer was found to have discrimi-
nated against women and was now required to treat them identically as it
treats men. In this case, the average loss, dloss , would be useful in determin-
ing the total shortfall in female pay at that firm, Nf � dloss , where Nf is the
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number of female employees. Moreover, Nf � dloss would also correspond to
the potential liability of this firm in a discrimination case, where the plain-
tiffs are its Nf female workers.

There are also other contexts in which focusing on dgap, dgain, or dloss

might be most appropriate. Traditionally, decomposition methods were
based on a choice of the ‘‘nondiscriminatory’’ or ‘‘competitive’’ wage struc-
ture, which required the researcher to take a stand on what would happen
in general equilibrium if discrimination were eradicated. Many researchers
seem to forget, however, that only one version of the ‘‘generalized’’ Oaxaca–
Blinder decomposition, namely the Neumark (1988) method, offers a func-
tional form of the nondiscriminatory wage structure that results from a theo-
retical model of the labor market. In all other cases, the comparison wage
structure does not seem to have any theoretical underpinnings.

What follows, even if we were potentially interested in such general equi-
librium effects, focusing instead on dgap , dgain, or dloss might often be more
realistic. Although in this article I avoid referring to the comparison wage
structure as ‘‘nondiscriminatory’’ or ‘‘competitive,’’ I also believe that non-
zero values of dgap , dgain , or dloss might sometimes be interpreted as evidence
of discrimination. If we observe all determinants of wages that are also cor-
related with group membership (Assumption 3), then the existence of sys-
tematic differences between observed wages of disadvantaged workers and
observed wages of similar advantaged workers directly contradicts the
notion of ‘‘equal pay for equal work,’’ which is largely synonymous with a
lack of wage discrimination.

Finally, important empirical contexts exist, in which the notion of a ‘‘non-
discriminatory’’ or ‘‘competitive’’ conditional mean generally does not
apply. Among these are black–white gaps in test scores, infant mortality, as
well as comparisons of wage structures across time. In these cases, a partial
equilibrium approach is perhaps natural, as is the focus on parameters such
as dgap , dgain, or dloss .

Future work might add to our understanding of formal conditions under
which causal effects of race, gender, and other immutable characteristics can
be identified and estimated (see Kunze 2008, Greiner and Rubin 2011, and
Huber 2015 for recent discussions). As already suggested by Fortin et al.
(2011), the economic structure behind decomposition methods should also
be improved. Finally, understanding the links between the decomposition
methods and the program evaluation literature is essential. Following an
important review in Fortin et al. (2011), this article has attempted to take this
ongoing discussion one step further by providing an interpretation of regres-
sion estimates of between-group differences in economic outcomes and devel-
oping a new decomposition compatible with the treatment effects framework.
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Ñopo, Hugo. 2008. Matching as a tool to decompose wage gaps. Review of Economics and Statis-
tics 90(2): 290–99.

Oaxaca, Ronald L. 1973. Male–female wage differentials in urban labor markets. International
Economic Review 14(3): 693–709.

Oaxaca, Ronald L., and Michael R. Ransom. 1988. Searching for the effect of unionism on
the wages of union and nonunion workers. Journal of Labor Research 9(2): 139–48.

———. 1994. On discrimination and the decomposition of wage differentials. Journal of
Econometrics 61(1): 5–21.

Penney, Jeffrey. 2017. Test score measurement and the black–white test score gap. Review of
Economics and Statistics 99(4): 652–56.

Reimers, Cordelia W. 1983. Labor market discrimination against Hispanic and black men.
Review of Economics and Statistics 65(4): 570–79.

Ritter, Joseph A., and Lowell J. Taylor. 2011. Racial disparity in unemployment. Review of Eco-
nomics and Statistics 93(1): 30–42.

Rothstein, Jesse, and Nathan Wozny. 2013. Permanent income and the black–white test score
gap. Journal of Human Resources 48(3): 509–544.

Sherer, George. 2000. Intergroup economic inequality in South Africa: The post-apartheid
era. American Economic Review: Papers & Proceedings 90(2): 317–21.
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