
Journal of Business & Economic Statistics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ubes20

Abadie’s Kappa and Weighting Estimators of the
Local Average Treatment Effect

Tymon Słoczyński, S. Derya Uysal & Jeffrey M. Wooldridge

To cite this article: Tymon Słoczyński, S. Derya Uysal & Jeffrey M. Wooldridge (19 Apr 2024):
Abadie’s Kappa and Weighting Estimators of the Local Average Treatment Effect, Journal of
Business & Economic Statistics, DOI: 10.1080/07350015.2024.2332763

To link to this article:  https://doi.org/10.1080/07350015.2024.2332763

© 2024 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material 

Published online: 19 Apr 2024.

Submit your article to this journal 

Article views: 465

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ubes20

https://www.tandfonline.com/journals/ubes20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07350015.2024.2332763
https://doi.org/10.1080/07350015.2024.2332763
https://www.tandfonline.com/doi/suppl/10.1080/07350015.2024.2332763
https://www.tandfonline.com/doi/suppl/10.1080/07350015.2024.2332763
https://www.tandfonline.com/action/authorSubmission?journalCode=ubes20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ubes20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07350015.2024.2332763?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07350015.2024.2332763?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2024.2332763&domain=pdf&date_stamp=19%20Apr%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2024.2332763&domain=pdf&date_stamp=19%20Apr%202024
https://www.tandfonline.com/action/journalInformation?journalCode=ubes20


JOURNAL OF BUSINESS & ECONOMIC STATISTICS
2024, VOL. 00, NO. 0, 1–14
https://doi.org/10.1080/07350015.2024.2332763

Abadie’s Kappa and Weighting Estimators of the Local Average Treatment Effect
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ABSTRACT
Recent research has demonstrated the importance of flexibly controlling for covariates in instrumental
variables estimation. In this article we study the finite sample and asymptotic properties of various weight-
ing estimators of the local average treatment effect (LATE), motivated by Abadie’s kappa theorem and
offering the requisite flexibility relative to standard practice. We argue that two of the estimators under
consideration, which are weight normalized, are generally preferable. Several other estimators, which are
unnormalized, do not satisfy the properties of scale invariance with respect to the natural logarithm
and translation invariance, thereby exhibiting sensitivity to the units of measurement when estimating
the LATE in logs and the centering of the outcome variable more generally. We also demonstrate that,
when noncompliance is one sided, certain weighting estimators have the advantage of being based on
a denominator that is strictly greater than zero by construction. This is the case for only one of the two
normalized estimators, and we recommend this estimator for wider use. We illustrate our findings with a
simulation study and three empirical applications, which clearly document the sensitivity of unnormalized
estimators to how the outcome variable is coded. We implement the proposed estimators in the Stata
package kappalate.
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1. Introduction

The validity of many instrumental variables, as applied in eco-
nomics and related fields, requires conditioning on additional
covariates. In such cases empirical researchers often approxi-
mate the causal effects of interest using additive linear models
and two-stage least squares (2SLS) estimation. However, recent
work by Słoczyński (2018, 2021) and Blandhol et al. (2022)
questions the general validity of this approach and, in particular,
the ability of the 2SLS estimand to uncover the local average
treatment effect (LATE), that is, the average effect of treatment
for “compliers,” as defined by Imbens and Angrist (1994) and
Angrist, Imbens, and Rubin (1996). One concern is that covari-
ate specifications used by empirical researchers are insufficiently
flexible (Blandhol et al. 2022). Another concern is that even
when they are flexible, the 2SLS estimand does not generally
correspond to the LATE or any other parameter of interest
(Słoczyński 2018, 2021).

In this article we study a class of simple yet flexible weighting
estimators of the LATE, which are robust to the aforementioned
limitations of 2SLS. The estimators we consider can be motivated
by the identification result in Abadie (2003), which applies to
any parameter defined in terms of moments of the joint dis-
tribution of the data for compliers, including the LATE. The
result in Abadie (2003) is based on “kappa weighting,” with
weights that depend on the instrument propensity score. Some
of the estimators we consider can alternatively be motivated
by the identification result in Frölich (2007), which suggests a
simple approach to estimating the LATE using the ratio of two
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conventional weighting estimators. Although the recent litera-
ture in econometrics and statistics has adopted this approach,
it focuses primarily on the ratio of two unnormalized weighting
estimators (Tan 2006; Frölich 2007; MaCurdy, Chen, and Hong
2011; Donald, Hsu, and Lieli 2014a, 2014b, Abdulkadiroğlu et al.
2017), despite the fact that the lack of normalization leads to
poor finite sample properties in related contexts (Imbens 2004;
Millimet and Tchernis 2009; Busso, DiNardo, and McCrary
2014). Here, normalization means rescaling the weights so that
they sum to one in each sample.

In this article we unify and provide a comprehensive treat-
ment of the two approaches to constructing weighting estima-
tors of the LATE. We begin with an observation that the existing
identification results enable the construction of multiple consis-
tent estimators of the LATE, only two of which are normalized.
One normalized estimator is the sample analogue of a particular
expression in Abadie and Cattaneo (2018), based on Abadie
(2003). However, it is also straightforward, as in Uysal (2011),
to construct a normalized version of Tan’s (2006) and Frölich’s
(2007) estimator and to interpret it through the lens of “kappa
weighting.” We argue that these two normalized estimators are
likely to dominate the unnormalized weighting estimators of the
LATE in many cases. Unlike most other papers that stress the
importance of normalization, we also provide an objective and
intuitively appealing criterion that differentiates the normalized
from the unnormalized estimators; see also Tillé (1998) and
Aronow and Middleton (2013). Indeed, we demonstrate that
the former class of estimators, unlike the latter, satisfies the
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properties of (i) translation invariance and (ii) scale invariance
with respect to the natural logarithm. This ensures that the
normalized estimators are not sensitive to the centering of the
outcome variable or, when estimating the LATE in logs, to the
units of measurement of the untransformed outcome (see Chen
and Roth 2024, for another recent discussion of scale invari-
ance).

We also identify an important context, namely settings with
one-sided noncompliance, in which certain estimators have an
additional advantage: they are based on a denominator that is
strictly greater than zero by construction. This is the case for
(i) Tan’s (2006) and Frölich’s (2007) unnormalized estimator
whenever there are no always-takers, that is, individuals who
participate in the treatment regardless of the value of the instru-
ment; (ii) a different unnormalized estimator whenever there
are no never-takers, that is, individuals who never participate
in the treatment; and (iii) the normalized estimator originally
proposed by Uysal (2011) in both of these cases. We recommend
this last estimator for wider use in practice.

Our observations about translation and scale invariance as
well as settings with one-sided noncompliance apply equally
when the instrument propensity score is known and when it is
estimated using standard methods. In practice, the instrument
propensity score is rarely known, and its estimation can greatly
influence the properties of the final estimator of the LATE.
We consider maximum likelihood and covariate balancing esti-
mation of the instrument propensity score, where the latter
approach follows Graham, Pinto, and Egel (2012), Graham,
Pinto, and Egel (2016), Imai and Ratkovic (2014), Heiler (2022),
and Sant’Anna, Song, and Xu (2022), among others. Either
approach is compatible with the construction of the estimator in
Uysal (2011), and when appropriate covariate balancing propen-
sity scores are used, this estimator is also equivalent to Heiler’s
(2022).

Aside from the finite sample properties of weighting esti-
mators of the LATE, we also study their asymptotic properties
in a unified framework of M-estimation. Under standard reg-
ularity conditions, our weighting estimators are asymptotically
normal, and we derive their asymptotic variances. To illustrate
our findings, we also use three empirical applications and a
simulation study. The simulations confirm the very good relative
performance of our preferred normalized estimator, especially
with covariate balancing propensity scores, which appear to be
more robust to misspecification than their maximum likelihood
counterparts.

Our empirical applications focus on causal effects of military
service (Angrist 1990), college education (Card 1995), and child-
bearing (Angrist and Evans 1998). In each of these cases, we
document what we regard as superiority of normalized weight-
ing. The bottom line is that unnormalized estimators are very
sensitive to how the outcome variable is coded. In each appli-
cation, the estimates are sensitive to the units of measurement
(cents, dollars, $1000s, $100,000s) of the income variable prior to
the log transformation. In our replication of Angrist and Evans
(1998), we also consider labor force participation as a binary
outcome, and we document that unnormalized estimators are
highly sensitive to whether working for pay is coded as, say,
1 or 0.

Our application of weighting to estimate the LATE appears
to be somewhat rare in practice, although Abadie’s (2003) result
is more commonly used to estimate mean characteristics of
compliers, as also recommended by Angrist and Pischke (2009).
We analyze two samples of applications of instrumental variables
to verify this claim. First, our reading of the 30 papers replicated
by Young (2022), each of which uses 2SLS, suggests that none of
these papers uses weighting estimators of the LATE or applies
Abadie’s (2003) result for any other purpose. Second, we have
also examined whether any of the papers published in journals of
the American Economic Association in 2019 and 2020 consider
weighting estimators of the LATE. Our best assessment is that
the answer is likewise negative. Still, Marx and Turner (2019),
Goodman, Gurantz, and Smith (2020), Leung and O’Leary
(2020), and Londoño-Vélez, Rodríguez, and Sánchez (2020)
apply Abadie’s (2003) result to estimate mean characteristics of
compliers, while Cohodes (2020) uses this result to estimate the
control complier mean (CCM), a parameter introduced by Katz,
Kling, and Liebman (2001). In this article we argue that “kappa
weighting” can also be used more widely as a flexible alternative
to 2SLS, and we provide a practical guide to using this method
to estimate the LATE.

The remainder of the article is organized as follows. Section 2
introduces our framework. Section 3 provides our theoretical
results on estimation and inference. Section 4 illustrates our
results with three empirical applications. Section 5 discusses our
simulation study. Section 6 concludes. Proofs and derivations
are collected in the online appendix unless noted otherwise. The
estimators considered in this article are also implemented in the
companion Stata package kappalate.

2. Framework

Our framework broadly follows Abadie (2003). Let Y denote the
outcome variable of interest, D the binary treatment, and Z the
binary instrument for D. We also introduce a vector of observed
covariates, X, that predict Z. The instrument propensity score is
written as p(X) = P(Z = 1 | X).

There are two potential outcomes, Y1 and Y0, only one of
which is observed for a given individual, Y = D · Y1 + (1 − D) ·
Y0. Similarly, there are two potential treatments, D1 and D0,
and it is Z that determines which of them is observed, D =
Z · D1 + (1 − Z) · D0. It will also be useful to include Z in the
definition of potential outcomes, letting Yzd denote the potential
outcome that a given individual would obtain if Z = z and
D = d.

Angrist, Imbens, and Rubin (1996) divide the population into
four mutually exclusive subgroups based on the latent values
of D1 and D0. Individuals with D1 = D0 = 1 are referred
to as always-takers, as they get treatment regardless of whether
they are encouraged to do so or not; similarly, individuals with
D1 = D0 = 0 are referred to as never-takers. Individuals with
D1 = 1 and D0 = 0 are referred to as compliers, as they comply
with their instrument assignment; they get treatment if they are
encouraged to do so but not otherwise. Analogously, individuals
with D1 = 0 and D0 = 1 are referred to as defiers, as they defy
their instrument assignment.
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As usual, we define the treatment effect as the difference in
the outcomes with and without treatment, Y1 − Y0. Follow-
ing Imbens and Angrist (1994), a large literature has focused
on identification and estimation of the local average treatment
effect (LATE), defined as

τLATE = E (Y1 − Y0 | D1 > D0) ,

that is as the average treatment effect for compliers or, in other
words, for those individuals who would be induced to get treat-
ment by the change in Z from zero to one.

Next, we review a general identification result due to Abadie
(2003), which we will use, in turn, to discuss identification of
τLATE. We begin by restating Abadie’s (2003) assumptions.

Assumption IV. (i) Independence of the instrument:
(Y00, Y01, Y10, Y11, D0, D1) ⊥ Z | X.
(ii) Exclusion of the instrument: P(Y1d = Y0d | X) = 1 for
d ∈ {0, 1} a.s.
(iii) First stage: 0 < P(Z = 1 | X) < 1 and P(D1 = 1 | X) >

P(D0 = 1 | X) a.s.
(iv) Monotonicity: P(D1 ≥ D0 | X) = 1 a.s.

These assumptions are standard in the recent literature.
Assumption IV(i) states that, conditional on covariates, the
instrument is “as good as randomly assigned.” Assumption IV(ii)
implies that the instrument only affects the outcome through
its effect on treatment status; it follows that Y0 = Y10 = Y00
and Y1 = Y11 = Y01. Assumption IV(iii) combines an overlap
condition with a requirement that the instrument affects the
conditional probability of treatment. Finally, Assumption IV(iv)
rules out the existence of defiers, and implies that the population
consists of always-takers, never-takers, and compliers. Under
Assumption IV, as demonstrated by Abadie (2003), any feature
of the joint distribution of (Y , D, X), (Y0, X), or (Y1, X) is iden-
tified for compliers.

Lemma 2.1 (Abadie 2003). Let g(·), g0(·), and g1(·) be measur-
able functions of their arguments such that E|g(Y , D, X)| < ∞,
E|g0(Y0, X)| < ∞, and E|g1(Y1, X)| < ∞. Define

κ0 = (1 − D)
(1 − Z) − (

1 − p(X)
)

p(X)
(
1 − p(X)

) ,

κ1 = D
Z − p(X)

p(X)
(
1 − p(X)

) ,

κ = κ0
(
1 − p(X)

) + κ1p(X) = 1 − D (1 − Z)

1 − p(X)
− (1 − D) Z

p(X)
.

Under Assumption IV,

(a) E
[
g(Y , D, X) | D1 > D0

] = 1
P(D1>D0)

E
[
κ g(Y , D, X)

]
,

(b) E
[
g0(Y0, X) | D1 > D0

] = 1
P(D1>D0)

E
[
κ0 g0(Y , X)

]
, and

(c) E
[
g1(Y1, X) | D1 > D0

] = 1
P(D1>D0)

E
[
κ1 g1(Y , X)

]
.

Moreover, (a–c) also hold conditional on X.

Both Abadie (2003) and the subsequent applied literature have
focused on the implications of Lemma 2.1(a). On the other
hand, Lemma 2.1(b) and (c) have been used in the econometrics
literature to identify and estimate τLATE and quantile treatment

effects (Frölich and Melly 2013; Abadie and Cattaneo 2018;
Sant’Anna, Song, and Xu 2022; Singh and Sun 2024).

To see how Lemma 2.1(b) and (c) identifies τLATE, take
g0(Y0, X) = Y0 and g1(Y1, X) = Y1, and write:

τLATE = 1
P(D1 > D0)

E (κ1Y) − 1
P(D1 > D0)

E (κ0Y) . (1)

We can also rewrite (1) to obtain the following expression for
τLATE:

τLATE = 1
P(D1 > D0)

E [(κ1 − κ0) Y] (2)

= 1
P(D1 > D0)

E

[
Y

Z − p(X)

p(X)
(
1 − p(X)

)
]

.

As we will see later, it is useful to treat equations (1) and (2)
as distinct. In any case, it is clear that τLATE is identified as
long as P(D1 > D0) is identified. As noted by Abadie (2003),
Lemma 2.1(a) implies that P(D1 > D0) = E(κ), which follows
from taking g(Y , D, X) = 1. Similarly, however, we can use
Lemma 2.1(b) and (c) to obtain P(D1 > D0) = E(κ1) and
P(D1 > D0) = E(κ0). This is not a novel observation but we will
provide a more comprehensive discussion of its consequences
than has been done in previous work. We conclude this section
with the following remark.

Remark 2.2. E(κ) = E(κ1) − E
[

Z−p(X)

p(X)

]
= E(κ1) =

E(κ1) − E
[

Z−p(X)

p(X)(1−p(X))

]
= E(κ0).

The proof of Remark 2.2 follows from simple algebra and is
omitted. The facts that E

[
Z−p(X)

p(X)

]
= 0 and E

[
Z−p(X)

p(X)(1−p(X))

]
=

0 hold by iterated expectations. It follows that E(κ) = E(κ1) =
E(κ0). Additionally, Lemma 2.1 implies that each of these objects
identifies P(D1 > D0).

3. Estimation and Inference

In this section we study estimation and inference for τLATE.
We begin by introducing our preferred weighting estimator of
this parameter. Then, we develop the argument in favor of this
estimator, beginning with the case where p(X) is known and later
explaining how p(X) can be estimated when it is not known.
While p(X) is rarely known in practice, our novel insights in
Sections 3.3 and 3.4 apply equally in that case and when p(X)

is estimated using standard methods.

3.1. Recommended Estimator

Given a random sample
{
(Di, Zi, Xi, Yi) : i = 1, . . . , N

}
, and

assuming that the instrument propensity score is known, our
recommended weighting estimator of τLATE can be written as

τ̂u =
[∑N

i=1
Zi

p(Xi)

]−1 ∑N
i=1

YiZi
p(Xi)

−
[∑N

i=1
1−Zi

1−p(Xi)

]−1 ∑N
i=1

Yi(1−Zi)
1−p(Xi)[∑N

i=1
Zi

p(Xi)

]−1 ∑N
i=1

DiZi
p(Xi)

−
[∑N

i=1
1−Zi

1−p(Xi)

]−1 ∑N
i=1

Di(1−Zi)
1−p(Xi)

.

(3)
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This estimator was proposed by Uysal (2011), and is easily
implementable as a function of six sample means. It is also imple-
mentable as the coefficient on D in a weighted IV regression of
Y on D, with Z as the instrument and weights equal to Z

p(X)
+

1−Z
1−p(X)

. When the instrument propensity score is not known,
a possibility we consider explicitly in Sections 3.5 and 3.6, we
would adopt a parametric model for p(X), F(X, α), estimate the
unknown parameters by an appropriate method, and replace
the instrument propensity scores in (3) with their estimates,
p̂(X) = F(X, α̂). The leading model for p(X) is logit, F(X, α) =
exp(Xα)/[1 + exp(Xα)], and the natural estimation methods
are maximum likelihood and covariate balancing. Appropriate
covariate balancing approaches include those in Graham, Pinto,
and Egel (2012), Graham, Pinto, and Egel (2016), and Imai and
Ratkovic (2014), each of which would lead to a simple method of
moments estimator of α. We defer further details on estimation
of α to Section 3.5. Note that τ̂u with covariate balancing propen-
sity scores is also recommended by Heiler (2022) but we are the
first to determine its advantages given in the analysis below.

Recent software implements τ̂u in R and Stata. Specifically,
Bodory and Huber (2018) implement this estimator in their
causalweight package in R, although covariate balancing
estimation of α is not currently supported and inference is based
on the bootstrap. Our companion Stata package kappalate
implements τ̂u and other weighting estimators, and we allow
both maximum likelihood and covariate balancing estimation
of α, as well as computation of analytical standard errors. The
package is downloadable from the Statistical Software Compo-
nents (SSC) Archive.

Two further comments about τ̂u are in order. First, this
is our preferred member of the class of weighting estimators,
but there are other classes of estimators one may be willing
to consider. One such class is doubly robust estimators, which
combine weighting and models for conditional expectations
of Y and D. Doubly robust estimators of τLATE have been
developed by Tan (2006), Uysal (2011), Ogburn, Rotnitzky,
and Robins (2015), Belloni et al. (2017), Słoczyński, Uysal, and
Wooldridge (2022), Ma et al. (2023), and others. In this article,
however, we restrict our attention to the class of weighting
estimators.

Second, a prototypical weighting or doubly robust estimator,
such as τ̂u, might be poorly behaved when some instrument
propensity scores are close to 0 or 1 (see Khan and Tamer 2010),
even if Assumption IV is not violated. In this scenario, usually
referred to as “limited” or “weak” overlap, it might be preferable
to use estimators of τLATE that were designed to alleviate this
problem, such as those in Hong, Leung, and Li (2020) and Ma
et al. (2023). See also Chaudhuri and Hill (2016), Rothe (2017),
Ma and Wang (2020), Heiler and Kazak (2021), and Sasaki and
Ura (2022) for settings with limited overlap and exogenous D,
as well as Lei et al. (2021) and Ma, Sasaki, and Wang (2022) for
formal statistical tests of limited overlap.

3.2. Estimation When the Instrument Propensity Score Is
Known

In this section we introduce several seemingly intuitive weight-
ing estimators of τLATE, which we will later show to have

some undesirable finite sample properties. For now, we continue
to assume that the instrument propensity score is known. In
this case, (2) suggests that we can consistently estimate τLATE
as follows:

τ̂LATE = 1
P̂(D1 > D0)

[
N−1

N∑
i=1

Yi
Zi − p(Xi)

p(Xi)
(
1 − p(Xi)

)
]

,

where P̂(D1 > D0)
p→ P(D1 > D0) > 0. Our discussion

in Section 2 also implies that there are at least three candidate
estimators for P(D1 > D0), namely N−1 ∑N

i=1 κi, N−1 ∑N
i=1 κi1,

and N−1 ∑N
i=1 κi0, where κi = 1 − Di(1−Zi)

1−p(Xi)
− (1−Di)Zi

p(Xi)
, κi1 =

Di
Zi−p(Xi)

p(Xi)(1−p(Xi))
, and κi0 = (1 − Di)

(1−Zi)−(1−p(Xi))
p(Xi)(1−p(Xi))

. Conse-
quently, we have the following consistent estimators of τLATE:

τ̂a =
[ N∑

i=1
κi

]−1 [ N∑
i=1

Yi
Zi − p(Xi)

p(Xi)
(
1 − p(Xi)

)
]

, (4)

τ̂a,1 =
[ N∑

i=1
κi1

]−1 [ N∑
i=1

Yi
Zi − p(Xi)

p(Xi)
(
1 − p(Xi)

)
]

, (5)

τ̂a,0 =
[ N∑

i=1
κi0

]−1 [ N∑
i=1

Yi
Zi − p(Xi)

p(Xi)
(
1 − p(Xi)

)
]

. (6)

One might mistakenly expect that the choice of the estimator
for P(D1 > D0) is largely inconsequential. We discuss this issue
extensively in what follows. For now, it should suffice to note that
N−1 ∑N

i=1
Zi−p(Xi)

p(Xi)
and N−1 ∑N

i=1
Zi−p(Xi)

p(Xi)(1−p(Xi))
are not gener-

ally equal to zero or to each other, and hence N−1 ∑N
i=1 κi,

N−1 ∑N
i=1 κi1, and N−1 ∑N

i=1 κi0 will also generally be different,
unlike their population counterparts (see Remark 2.2).

Lemma 2.1 is not the only identification result that allows us
to construct consistent estimators of the LATE. An alternative
result is provided by Frölich (2007, Theorem 1). An implication
of this result is that the ratio of any consistent estimator of the
average treatment effect (ATE) of Z on Y and any consistent
estimator of the ATE of Z on D is consistent for the LATE.
Given our interest in weighting estimators, a natural candidate
estimator is

τ̂t =
[ N∑

i=1

DiZi
p(Xi)

−
N∑

i=1

Di (1 − Zi)

1 − p(Xi)

]−1

×
[ N∑

i=1

YiZi
p(Xi)

−
N∑

i=1

Yi (1 − Zi)

1 − p(Xi)

]
, (7)

as suggested by Tan (2006) and Frölich (2007). This estimator is
equal to the ratio of two weighting estimators of the ATE of Z (on
Y and D) under unconfoundedness (see Hirano, Imbens, and
Ridder 2003). The following remark, which has not been pre-
cisely stated in previous work, clarifies the relationship between
τ̂t and the other estimators introduced above.

Remark 3.1. τ̂t = τ̂a,1.
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Remark 3.1 states that τ̂t and τ̂a,1 are numerically identi-
cal, which can be seen by plugging in the expression for κi1
into (5):

τ̂a,1 =
[ N∑

i=1
Di

Zi − p(Xi)

p(Xi)
(
1 − p(Xi)

)
]−1

×
[ N∑

i=1
Yi

Zi − p(Xi)

p(Xi)
(
1 − p(Xi)

)
]

. (8)

As is easy to see, expressions (7) and (8) are equivalent. It is
also important to note that τ̂t (= τ̂a,1), or at least its variant
where p(X) is estimated, is by far the most popular weighting
estimator of the LATE in the econometrics literature. It has
been considered by Tan (2006), Frölich (2007), MaCurdy, Chen,
and Hong (2011), Donald, Hsu, and Lieli (2014a, 2014b), and
Abdulkadiroğlu et al. (2017), among others. As we will see in
the next section, however, this estimator has a major drawback
in practice.

3.3. Unnormalized and Normalized Weights

Following Imbens (2004), Millimet and Tchernis (2009), and
Busso, DiNardo, and McCrary (2014), it is widely understood
that weighting estimators of the ATE under unconfoundedness
should be normalized, that is their weights should sum to unity,
an idea that is often attributed to Hájek (1971). More recently,
Khan and Ugander (2023) provide a general treatment of nor-
malization under unconfoundedness while Sant’Anna and Zhao
(2020) and Callaway and Sant’Anna (2021) stress the importance
of normalization in difference-in-differences methods. It is nat-
ural to expect that normalization will also be important when
estimating the LATE (see Heiler 2022).

It follows immediately that τ̂t is likely inferior to the ratio of
two normalized, Hájek-type estimators of the ATE of Z under
unconfoundedness:

τ̂u =
[∑N

i=1
Zi

p(Xi)

]−1 ∑N
i=1

YiZi
p(Xi)

−
[∑N

i=1
1−Zi

1−p(Xi)

]−1 ∑N
i=1

Yi(1−Zi)
1−p(Xi)[∑N

i=1
Zi

p(Xi)

]−1 ∑N
i=1

DiZi
p(Xi)

−
[∑N

i=1
1−Zi

1−p(Xi)

]−1 ∑N
i=1

Di(1−Zi)
1−p(Xi)

.

This estimator, first proposed by Uysal (2011), was introduced
in (3) as our preferred estimator. It might not be immedi-
ately obvious how the importance of normalization affects our
understanding of τ̂a, τ̂a,1, and τ̂a,0. To see this, note that these
estimators can equivalently be represented as sample analogues
of (1):

τ̂a =
[ N∑

i=1
κi

]−1 [ N∑
i=1

κi1Yi

]
−

[ N∑
i=1

κi

]−1 [ N∑
i=1

κi0Yi

]
,

τ̂a,1 =
[ N∑

i=1
κi1

]−1 [ N∑
i=1

κi1Yi

]
−

[ N∑
i=1

κi1

]−1 [ N∑
i=1

κi0Yi

]
,

τ̂a,0 =
[ N∑

i=1
κi0

]−1 [ N∑
i=1

κi1Yi

]
−

[ N∑
i=1

κi0

]−1 [ N∑
i=1

κi0Yi

]
.

None of these estimators is normalized. First, τ̂a uses weights
of

[∑N
i=1 κi

]−1
κi1 and

[∑N
i=1 κi

]−1
κi0, which do not nec-

essarily sum to unity across i. Second, τ̂a,1 is based on

weights of
[∑N

i=1 κi1
]−1

κi1, which are properly normalized, and[∑N
i=1 κi1

]−1
κi0, which are not. Finally, τ̂a,0 uses weights of[∑N

i=1 κi0
]−1

κi1, which do not necessarily sum to unity across

i, and
[∑N

i=1 κi0
]−1

κi0, which are properly normalized.
It is straightforward to construct a normalized estima-

tor based on (1). To do this, the two denominators need
to be estimated separately, using different estimators of
P(D1 > D0), N−1 ∑N

i=1 κi1 and N−1 ∑N
i=1 κi0. The resulting

estimator becomes

τ̂a,10 =
[ N∑

i=1
κi1

]−1 [ N∑
i=1

κi1Yi

]
−

[ N∑
i=1

κi0

]−1 [ N∑
i=1

κi0Yi

]
,

where both sets of weights,
[∑N

i=1 κi1
]−1

κi1 and[∑N
i=1 κi0

]−1
κi0, are properly normalized. This estimator

has been considered by Abadie and Cattaneo (2018) and
Sant’Anna, Song, and Xu (2022). While the literature on quantile
treatment effects studies normalized kappa weighting estimators
somewhat more often (see, e.g., Frölich and Melly 2013), the
importance of normalization is not explicitly recognized.
Interestingly, if the goal is to estimate E (X | D1 > D0) rather
than τLATE or quantile treatment effects, as in Marx and Turner
(2019), Goodman, Gurantz, and Smith (2020), Leung and
O’Leary (2020), and Londoño-Vélez, Rodríguez, and Sánchez
(2020), among others, then three normalized estimators of
this object can readily be constructed:

[∑N
i=1 κi

]−1 ∑N
i=1 κiXi,[∑N

i=1 κi0
]−1 ∑N

i=1 κi0Xi, and
[∑N

i=1 κi1
]−1 ∑N

i=1 κi1Xi.
It should also be noted that τ̂u can likewise be interpreted as

a normalized “Abadie” or “kappa weighting” estimator. To see
this, note that N−1 ∑N

i=1
Zi

p(Xi)

p→ 1 and N−1 ∑N
i=1

1−Zi
1−p(Xi)

p→

1. This implies that τ̂u
p→ E

[
YZ

p(X)

]
−E

[
Y(1−Z)
1−p(X)

]
E
[

DZ
p(X)

]
−E

[
D(1−Z)
1−p(X)

] = E
[

Y Z−p(X)

p(X)(1−p(X))

]
E(κ1)

,

which is the same as the expression for τLATE in (2), subject to
P(D1 > D0) = E(κ1).

So far, we have made it seem obvious that weighting estima-
tors should be normalized. Yet, it is natural to ask: Why is it so
important that weights sum to unity? Many of the recommenda-
tions to date are based on simulation results (e.g., Millimet and
Tchernis 2009; Busso, DiNardo, and McCrary 2014), and it is not
clear to what extent such evidence should guide estimator choice
(see Advani, Kitagawa, and Słoczyński 2019). In what follows,
we provide an objective and intuitively appealing criterion that
differentiates the normalized from the unnormalized estimators.

To present our criterion, we need to introduce some addi-
tional notation. Let Y be a column vector of observed data on
outcomes and W = (D Z X) be a matrix of observed data
on the remaining variables, namely the treatment status, the
instrument, and the covariates. We postulate that any reasonable
estimator of τLATE should be translation invariant.

Definition TI (Translation Invariance). We say that an esti-
mator τ̂ = τ̂ (Y, W) is translation invariant if τ̂ (Y, W) =
τ̂ (Y + k, W) for all Y, W, and k.
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The property of translation invariance is defined as the invari-
ance of an estimator to an additive change of the outcome
values for all units by a fixed amount. Put differently, estimators
that are not translation invariant will generally depend on how
the outcome variable is centered. If this variable is binary, the
estimate may change when we relabel the zeros and ones, on
top of the obvious sign change that is due to relabeling. If
the outcome is a logarithm of some other variable, the esti-
mator is also not invariant to scale transformations of that
variable.

Definition SE (Scale Equivariance). We say that an estimator τ̂ =
τ̂ (Y, W) is scale equivariant if τ̂

(
f (aY), W

) = aα1 τ̂
(
f (Y), W

)
,

f (Y) = (
g(Y1), . . . , g(YN)

)
, g(Y) = α2Yα1 − α3, for all Y > 0,

W, a > 0, and α1, α2, α3 ∈ R.

The property of scale equivariance, if satisfied by a given estima-
tor, gives a guarantee that a broad class of multiplicative, power,
and additive transformations of the outcome data can only lead
to specific, intuitively sensible changes in the final estimate. An
important special case of scale equivariance is scale invariance
with respect to the natural logarithm, which follows from setting
α1 → 0, α2 = 1/α1, and α3 = α2 in Definition SE. To be clear,
the idea here is as follows: the researcher transforms the outcome
data prior to analysis, perhaps because they want to interpret the
estimates as percentages, in which case they would use g(Y) =
log(Y); however, if their estimator is not scale invariant with
respect to the natural logarithm, the resulting estimates will
depend on the units of Y , which directly contradicts the idea
of interpreting them as percentages.

The following result demonstrates that the unnormalized
weighting estimators discussed so far are not translation invari-
ant and not scale equivariant. Thus, they are also not scale invari-
ant with respect to the natural logarithm. On the other hand,
the normalized estimators, τ̂u and τ̂a,10, satisfy the properties of
translation invariance and scale equivariance, which means that
they are also scale invariant with respect to g(Y) = log(Y).

Proposition 3.2. τ̂u and τ̂a,10 are translation invariant and scale
equivariant. τ̂a, τ̂t (= τ̂a,1), and τ̂a,0 are not translation invariant
and not scale equivariant.

The properties of translation invariance and scale equivari-
ance are very appealing, and it makes intuitive sense to only
use estimators that satisfy them. To conclude this section, we
make three final observations. First, the point of Proposition 3.2
is similar but distinct from that of Chen and Roth (2024),
who focus on the sensitivity to scaling of log(1 + Y) and
similar transformations, and do not restrict their attention to
any specific estimators (including weighting). Unlike in Chen
and Roth (2024), the problem we describe disappears in large
samples. On the other hand, the problem described by Chen
and Roth (2024) disappears when the outcome only assumes
strictly positive values, which is not the case in Proposition 3.2.
Second, it is useful to note that doubly robust estimators of
τLATE, which we mentioned briefly in Section 3.1, are gen-
erally translation invariant and scale equivariant, subject to
mild conditions on the outcome model. Finally, several previ-
ous papers, including Tillé (1998) and Aronow and Middleton

Table 1. Simplified formulas for κ , κ1, and κ0 in subpopulations defined by Z and D.

κ sgn(κ) κ1 sgn(κ1) κ0 sgn(κ0)

Z = 1, D = 1 1 + 1
p(X)

+ 0 0

Z = 1, D = 0 − 1−p(X)
p(X)

− 0 0 − 1
p(X)

−
Z = 0, D = 1 − p(X)

1−p(X)
− − 1

1−p(X)
− 0 0

Z = 0, D = 0 1 + 0 0 1
1−p(X)

+

(2013), note that the usual unnormalized weighting estimator
is not translation invariant in settings with exogenous D. We
extend this result to a class of weighting estimators of the LATE
and additionally examine the more general property of scale
equivariance.

3.4. Near-Zero Denominators

Weighting estimators of τLATE, like two-stage least squares and
many other IV methods, are an example of ratio estimators. A
common problem with such estimators is that they behave badly
if their denominator is close to zero (see Andrews, Stock, and
Sun 2019). In this section we document that in settings with
one-sided noncompliance, that is when units with Z = 1 or
units with Z = 0 fully comply with their instrument assignment,
there is a choice of weighting estimators that have an important
advantage: they are based on a denominator that is strictly
greater than zero by construction.

To see this, note that Table 1 provides simplified formulas for
κ , κ1, and κ0 in each of the four subpopulations defined by their
values of Z and D. For example, κ = 1 if Z = 1 and D = 1 or Z =
0 and D = 0; moreover, κ = − 1−p(X)

p(X)
if Z = 1 and D = 0, and

κ = − p(X)

1−p(X)
if Z = 0 and D = 1. It follows that N−1 ∑N

i=1 κi
is the mean of a collection of positive and negative values, and
hence it can be positive, negative, or zero. This is despite the
fact that N−1 ∑N

i=1 κi is also a consistent estimator of P(D1 >

D0), which is strictly positive under Assumption IV. Similarly,
N−1 ∑N

i=1 κi1 and N−1 ∑N
i=1 κi0 are also not guaranteed to be

positive in general.
However, the situation is different in settings with one-sided

noncompliance. If all individuals with Z = 1 get treatment or,
equivalently, there are no never-takers, the second row of Table 1
is empty and P(κ0 ≥ 0) = 1. This is the case, for example, in
studies that use twin births as an instrument for fertility (e.g.,
Angrist and Evans 1998). Similarly, if there are no always-takers,
then P(κ1 ≥ 0) = 1. This is the case, for example, in randomized
trials with noncompliance that make it impossible to access
treatment if not offered. An implication of these observations
is that in settings with one-sided noncompliance there exist
estimators of P(D1 > D0), and perhaps also the LATE, that have
some desirable properties in finite samples.

Proposition 3.3. If there are no always-takers, N−1 ∑N
i=1 κi1 > 0.

If there are no never-takers, N−1 ∑N
i=1 κi0 > 0.

Proof. To prove the first statement, note that 1
p(X)

> 1
by Assumption IV(iii). If there are no always-takers, then
P(Z = 0, D = 1) = 0. Thus, N−1 ∑N

i=1 κi1 >
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N−1

⎛
⎜⎝1 + 1 + · · · + 1︸ ︷︷ ︸

N·P̂(D=1)

+ 0 + 0 + · · · + 0︸ ︷︷ ︸
N·P̂(D=0)

⎞
⎟⎠ = P̂(D = 1) > 0.

The proof of the second statement is analogous.

Proposition 3.3 demonstrates that settings with one-sided non-
compliance offer a choice of estimators of P(D1 > D0), based
on κ1 and κ0, that are strictly greater than zero by construction.
Interestingly, the denominator of τ̂u is also strictly greater than
zero when noncompliance is one sided, and this is true regard-
less of whether there are no always-takers or no never-takers.

Proposition 3.4. Suppose there are no always-takers or no never-
takers. Then

[ N∑
i=1

Zi
p(Xi)

]−1 N∑
i=1

DiZi
p(Xi)

−
[ N∑

i=1

1 − Zi
1 − p(Xi)

]−1 N∑
i=1

Di (1 − Zi)

1 − p(Xi)
> 0.

Proof. Begin with the case of no always-takers. Then,
P[D(1 − Z) = 1] = 0, which implies that∑N

i=1
Di(1−Zi)
1−p(Xi)

= 0 and, as a result,
[∑N

i=1
Zi

p(Xi)

]−1 ∑N
i=1

DiZi
p(Xi)

−[∑N
i=1

1−Zi
1−p(Xi)

]−1 ∑N
i=1

Di(1−Zi)
1−p(Xi)

=
[∑N

i=1
Zi

p(Xi)

]−1 ∑N
i=1

DiZi
p(Xi)

> 0. Next, consider the case of no never-takers.
Then, Z = 1 implies DZ = 1, which means that[∑N

i=1
Zi

p(Xi)

]−1 ∑N
i=1

DiZi
p(Xi)

= 1. At the same time, P[(1 − D)

(1 − Z) = 1] > 0, which implies that
∑N

i=1
1−Zi

1−p(Xi)
>∑N

i=1
Di(1−Zi)
1−p(Xi)

and 0 <
[∑N

i=1
1−Zi

1−p(Xi)

]−1 ∑N
i=1

Di(1−Zi)
1−p(Xi)

<

1. Finally,
[∑N

i=1
Zi

p(Xi)

]−1 ∑N
i=1

DiZi
p(Xi)

−
[∑N

i=1
1−Zi

1−p(Xi)

]−1

∑N
i=1

Di(1−Zi)
1−p(Xi)

= 1 −
[∑N

i=1
1−Zi

1−p(Xi)

]−1 ∑N
i=1

Di(1−Zi)
1−p(Xi)

> 0.

An implication of Propositions 3.3 and 3.4 is that certain weight-
ing estimators have the advantage of avoiding near-zero denom-
inators when noncompliance is one sided. There are two unnor-
malized estimators that have this property, τ̂a,1 when there are
no always-takers and τ̂a,0 when there are no never-takers, and
one normalized estimator, τ̂u, which retains this property in both
cases. The other normalized estimator, τ̂a,10, does not generally
share this property with τ̂u. Indeed, if N−1 ∑N

i=1 κi1 is away from
zero but N−1 ∑N

i=1 κi0 is not, then this may affect the perfor-
mance of not only τ̂a,0 but also τ̂a,10. Likewise, if N−1 ∑N

i=1 κi1
is close to zero, then both τ̂a,1 and τ̂a,10 are affected.

3.5. Estimation When the Instrument Propensity Score Is
Unknown

Our discussion in Sections 3.2–3.4 assumed that p(X) is known,
which is often unrealistic. In practice, researchers typically
adopt a parametric model for p(X), say the logit, F(X, α) =
exp(Xα)/[1 + exp(Xα)], and estimate α by maximum likeli-
hood. Our observations above apply equally in this case. Indeed,
the normalized estimators are translation invariant and scale
equivariant while the unnormalized estimators are not. At the

same time, two specific unnormalized estimators and one nor-
malized estimator avoid near-zero denominators in settings with
one-sided noncompliance. From now on, if we wish to specify
that α is estimated using maximum likelihood, we use an “ml”
subscript or superscript. Thus, α̂ml is the maximum likelihood
estimator of α, p̂ml(X) = F(X, α̂ml) are the estimated propensity
scores, and τ̂ml

u , τ̂ml
a,10, τ̂ml

a , τ̂ml
t (= τ̂ml

a,1), and τ̂ml
a,0 are the analogues

of the previously introduced estimators, with p̂ml(X) replacing
p(X).

Alternatively, we can estimate α using covariate balancing
methods, such as those studied by Graham, Pinto, and Egel
(2012), Graham, Pinto, and Egel (2016), Imai and Ratkovic
(2014), Heiler (2022), and Sant’Anna, Song, and Xu (2022).
Following Heiler (2022), we focus on the approach of Imai and
Ratkovic (2014), which amounts to estimating α using a different
set of moment conditions than maximum likelihood. Indeed, the
population moment conditions in Imai and Ratkovic (2014) are

E
[

Z
F(X, α)

X
]

= E
[

1 − Z
1 − F(X, α)

X
]

,

and the corresponding sample moment conditions can be writ-
ten as

N−1
N∑

i=1

Zi
F(Xi, α̂cb)

Xi = N−1
N∑

i=1

1 − Zi
1 − F(Xi, α̂cb)

Xi, (9)

where α̂cb is the method of moments estimator of α. We also use
p̂cb(X) = F(X, α̂cb) to denote the covariate balancing propensity
scores, and τ̂ cb

u , τ̂ cb
a,10, τ̂ cb

a , τ̂ cb
t (= τ̂ cb

a,1), and τ̂ cb
a,0 to denote the

analogues of the previously introduced estimators, with p̂cb(X)

replacing p(X).
In a recent paper, τ̂ cb

u is also recommended by Heiler (2022),
who shows that it is numerically identical to τ̂ cb

t , as long as X
includes a constant. We add to Heiler’s (2022) observation and
determine that, when X includes a constant, τ̂ cb

u is also identical
to τ̂ cb

a,10 and τ̂ cb
a,0.

Proposition 3.5. If X includes a constant, τ̂ cb
u = τ̂ cb

t = τ̂ cb
a,1 =

τ̂ cb
a,0 = τ̂ cb

a,10.

Proposition 3.5 demonstrates that using covariate balancing
propensity scores solves the problem of choosing an appro-
priate weighting estimator of τLATE, because all the estimators
we previously determined to have some desirable finite sample
properties are identical when p̂cb(X) replaces p(X).

3.6. Inference

So far, we have focused on the finite sample properties of several
weighting estimators of τLATE. To determine the asymptotic
distribution of each estimator, we apply general results on M-
estimation (Wooldridge 2010; Boos and Stefanski 2013), as all
the weighting estimators considered in this article can be repre-
sented as an M-estimator.

Weighting estimators are all functions of the instrument
propensity score, p(X). As in Section 3.5, we assume a paramet-
ric model, F(X, α), for p(X). Thus, the LATE can be estimated by
a two-step procedure where α is estimated in the first step and
the unknown F(X, α) is replaced with its estimate in the second
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step. Alternatively, one could jointly estimate α and τLATE within
an M-estimation framework using moment functions related to
both α and τLATE. The moment function related to the esti-
mation of α is either the score from the maximum likelihood
estimation or the covariate balancing condition from Imai and
Ratkovic (2014). The moment functions related to τLATE are
derived from the identification results in Section 2. All moment
functions are summarized in Table A.1 in the online appendix.
For different weighting estimators, different combinations of
moment functions will be necessary. Provided that the standard
regularity conditions (Newey and McFadden 1994) are satisfied
and the relevant moments exist, all the estimators considered
here are asymptotically normal. The derivation of the asymptotic
variance for each of the estimators is presented in the online
appendix. These variances are also estimated in our companion
Stata package kappalate.

Although it would be interesting to compare the asymptotic
variances of the different weighting estimators considered in this
article, we leave this task to future research. At this time, we
instead make three additional points. First, we conjecture, as in
Kitagawa and Muris (2016) and Khan and Ugander (2023), that
normalization may help reduce the asymptotic variance of an
estimator, in which case τ̂ml

u would be more efficient than τ̂ml
t

(= τ̂ml
a,1). Second, we note that τ̂ cb

u attains the semiparametric
efficiency bound in Frölich (2007) and Hong and Nekipelov
(2010) as long as the number of balancing constraints grows
appropriately with the sample size (see Heiler 2022). Third,
we recognize that our asymptotic analysis implicitly requires a
restriction stronger than Assumption IV(iii), namely the “strong
overlap” assumption of Khan and Tamer (2010).

4. Empirical Applications

In this section we use three empirical applications to illustrate
our findings from Section 3. The bottom line is that the propor-
tion of compliers is sufficiently large in every application (i.e., the
instruments are sufficiently strong) so that the phenomenon of
dividing by “near zero” never occurs. Ultimately, the three nor-
malized estimators that we consider, τ̂ cb

u , τ̂ml
u , and τ̂ml

a,10, are prac-
tically indistinguishable from one another in all applications. At
the same time, we document the lack of translation invariance
and scale equivariance of the unnormalized estimators. We also
report the corresponding 2SLS estimates, which are obtained
with the covariates appearing additively in the linear equation.
Both in this context and in the case of parametric estimation
of the instrument propensity score, the relevant model may
be misspecified in the absence of sufficiently flexible covariate
specifications.

4.1. Causal Effects of Military Service (Angrist 1990)

In our first application, we revisit Angrist’s (1990) study of causal
effects of military service using the draft eligibility instrument.
In the early 1970s, priority for induction in the United States was
determined in a sequence of lotteries. The instrument in Angrist
(1990) takes the value 1 for individuals with dates of birth that
were randomly determined as draft eligible and 0 otherwise.

Table 2. Causal effects of military service on log wages.

(1) (2) (3) (4) (5) (6)

A. 2SLS 0.233 0.233 0.227 0.227 0.254 0.254
(0.212) (0.212) (0.229) (0.229) (0.227) (0.227)

B. Normalized estimates:
τ̂ cb

u 0.229 0.229 0.208 0.208 0.241 0.241
(0.213) (0.213) (0.232) (0.232) (0.229) (0.229)

τ̂ml
u 0.234 0.234 0.202 0.202 0.241 0.241

(0.211) (0.211) (0.235) (0.235) (0.229) (0.229)
τ̂ml

a,10 0.227 0.227 0.204 0.204 0.241 0.241
(0.204) (0.204) (0.239) (0.239) (0.229) (0.229)

C. Unnormalized estimates:
τ̂ml

a –0.429* 0.015 0.537* 0.314 0.241 0.241
(0.258) (0.207) (0.322) (0.252) (0.229) (0.229)

τ̂ml
t = τ̂ml

a,1 –0.455 0.016 0.515* 0.302 0.241 0.241
(0.279) (0.219) (0.301) (0.240) (0.229) (0.229)

τ̂ml
a,0 –0.413* 0.014 0.540* 0.317 0.241 0.241

(0.246) (0.199) (0.326) (0.255) (0.229) (0.229)

Outcome measurement:
Cents � � �
Dollars � � �
Covariates:
Age � �
Cubic in age � �
Saturated in age � �
Observations 3,027 3,027 3,027 3,027 3,027 3,027

NOTE: The data are Angrist’s (1990) subsample of the 1984 Survey of Income and
Program Participation (SIPP). The outcome is log hourly wages, with wages mea-
sured either in cents or in dollars prior to the log transformation. The treatment is
an indicator for whether an individual is a veteran. The instrument is an indicator
for whether an individual had a lottery number below the draft eligibility ceiling.
The logit model is used for the instrument propensity score, with the unknown
parameters estimated using maximum likelihood or the moment conditions in
(9). Standard errors are in parentheses. For 2SLS, we use robust standard errors. For
the remaining estimators, we calculate the standard errors using the asymptotic
variance formulas in the online appendix.

*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

Because the fraction of eligible dates of birth was cohort specific,
it is essential to control for age in this application.

In what follows, we use a sample of 3027 individuals from the
1984 Survey of Income and Program Participation (SIPP), which
is also considered by Mourifié and Wan (2017). Our outcome
of interest is log wage. To illustrate the invariance properties
in Proposition 3.2, we consider the natural logarithm of hourly
wages as measured in cents or dollars. We also consider three
sets of covariates: age, a cubic in age, and a set of indicator
variables for each value of age. Summary statistics for these data
are reported in Table 6 of Mourifié and Wan (2017).

Table 2 reports our estimates of causal effects of military
service. Panels A and B, which report 2SLS and normalized
weighting estimates, suggest that these effects were positive and
economically meaningful in the period under study, with a nar-
row range of estimates from 20 to 25 log points. The differences
between the 2SLS and weighting estimates (as well as their
standard errors) are always very minor. Although the estimated
effects are all positive, they are not statistically significant. The
estimates do not depend on whether we measure wages in cents
or dollars.

Panel C of Table 2 reports unnormalized weighting estimates.
Unlike in panels A and B, these estimates are heavily dependent
on the exact specification and, except in the case of the saturated
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Table 3. Causal effects of college education on log wages.

Some college attendance College completion

(1) (2) (3) (4) (5) (6) (7) (8)

A. 2SLS 0.661** 0.661** 0.575* 0.575* 1.392* 1.392* 0.991 0.991
(0.294) (0.294) (0.308) (0.308) (0.798) (0.798) (0.610) (0.610)

B. Normalized estimates:
τ̂ cb

u 0.376* 0.376* 0.331 0.331 0.853 0.853 0.588 0.588
(0.223) (0.223) (0.236) (0.236) (0.549) (0.549) (0.433) (0.433)

τ̂ml
u 0.331 0.331 0.356 0.356 0.619 0.619 0.628 0.628

(0.202) (0.202) (0.244) (0.244) (0.387) (0.387) (0.448) (0.448)
τ̂ml

a,10 0.346* 0.346* 0.293 0.293 0.586* 0.586* 0.836 0.836
(0.200) (0.200) (0.252) (0.252) (0.356) (0.356) (0.821) (0.821)

C. Unnormalized estimates:
τ̂ml

a –0.319 0.170 2.248** 0.842** –0.594 0.315 4.317* 1.617*
(1.182) (0.370) (0.971) (0.362) (2.184) (0.696) (2.485) (0.891)

τ̂ml
t = τ̂ml

a,1 –0.321 0.171 2.053** 0.769** –0.601 0.319 3.651** 1.367**
(1.201) (0.367) (0.813) (0.308) (2.251) (0.687) (1.780) (0.648)

τ̂ml
a,0 –0.290 0.154 2.846* 1.066* –0.501 0.266 7.241 2.712

(1.036) (0.354) (1.592) (0.574) (1.728) (0.639) (7.246) (2.577)

Outcome measurement:
Cents � � � �
Dollars � � � �
Specification: Card Card Kitagawa Kitagawa Card Card Kitagawa Kitagawa

Observations 3,010 3,010 3,010 3,010 3,010 3,010 3,010 3,010

NOTE: The data are Card’s (1995) subsample of the National Longitudinal Survey of Young Men (NLSYM). The outcome is log hourly wages, with wages measured either
in cents or in dollars prior to the log transformation. The treatment is an indicator for whether an individual has at least 13 (“some college attendance”) or 16 years of
schooling (“college completion”). The instrument is an indicator for whether an individual grew up in the vicinity of a four-year college. The logit model is used for the
instrument propensity score, with the unknown parameters estimated using maximum likelihood or the moment conditions in (9). The first specification (“Card”) follows
Card (1995) and includes experience, experience squared, nine regional indicators, and indicators for whether Black, whether lived in an SMSA in 1966 and 1976, and
whether lived in the South in 1976. The second specification (“Kitagawa”) follows Kitagawa (2015) and includes indicators for whether Black, whether lived in an SMSA in
1966 and 1976, and whether lived in the South in 1966 and 1976. Standard errors are in parentheses. For 2SLS, we use robust standard errors. For the remaining estimators,
we calculate the standard errors using the asymptotic variance formulas in the online appendix.

*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

specification, on whether we measure wages in cents or dollars
prior to the log transformation. For example, in columns 1 and
2, we only control for age, and yet the estimates are negative and
marginally significant when wages are measured in cents prior
to the log transformation, while becoming marginally positive
when wages are measured in dollars. When the covariate speci-
fication is saturated, as in columns 5 and 6, the unnormalized
estimates do not depend on the units of measurement of the
original outcome variable; they also become identical to each
other and to the normalized estimates. This demonstrates the
virtue of flexible covariate specifications.

4.2. Causal Effects of College Education (Card 1995)

In our second application, we revisit Card’s (1995) study of
causal effects of education using the college proximity instru-
ment. Card (1995) uses data from the National Longitudinal
Survey of Young Men (NLSYM) and restricts his attention to
a subsample of 3010 individuals who were interviewed in 1976
and reported valid information on wage and education. His
endogenous variable of interest is years of schooling, which is
instrumented by an indicator for the presence of a four-year
college in the respondent’s local labor market in 1966.

This study has been revisited by numerous papers, many of
which focus on binarized versions of Card’s (1995) education
variable. For example, Tan (2006) and Słoczyński (2021) study
the effects of having at least thirteen years of schooling (“some
college attendance”) while Huber and Mellace (2015), Kitagawa

(2015), Mourifié and Wan (2017), and Andresen and Huber
(2021) focus on having at least sixteen years of schooling (“col-
lege completion”). In what follows, we consider both binariza-
tions. Our outcome of interest is log hourly wage, with wages
measured either in cents or in dollars. We also consider two sets
of covariates: a quadratic in experience, nine regional indicators,
and indicators for whether Black, whether lived in an SMSA in
1966 and 1976, and whether lived in the South in 1976, as in
Card (1995); and indicators for whether Black, whether lived in
an SMSA in 1966 and 1976, and whether lived in the South in
1966 and 1976, as in Kitagawa (2015). Summary statistics for
these data are reported in Table 1 of Card (1995).

Table 3 reports our estimates of causal effects of college edu-
cation on log wages. Many of these estimates seem implausible,
often because they are “too large.” This is unsurprising given the
possible failures of the exclusion restriction and monotonicity
in this application (see Andresen and Huber 2021; Słoczyński
2021). From our perspective, these concerns are less relevant,
however, because we use Table 3 as another illustration of Propo-
sition 3.2. The normalized estimates (as well as 2SLS) clearly
do not depend on the units of measurement of the outcome
variable prior to the log transformation. This is no longer the
case for the unnormalized estimates, as reported in Panel C
of Table 3. For example, when focusing on the “some college
attendance” treatment and using Card’s (1995) specification, we
obtain negative estimates when wages are measured in cents
but positive when they are measured in dollars. Both sets of
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Table 4. Causal effects of childbearing on labor force participation and log income.

Labor force participation Log income

(1) (2) (3) (4) (5) (6) (7)

A. 2SLS –0.117*** –0.117*** –0.117*** –0.135 –0.135 –0.135 –0.135
(0.025) (0.025) (0.025) (0.092) (0.092) (0.092) (0.092)

B. Normalized estimates:
τ̂ cb

u –0.117*** –0.117*** –0.117*** –0.135 –0.135 –0.135 –0.135
(0.025) (0.025) (0.025) (0.092) (0.092) (0.092) (0.092)

τ̂ml
u –0.117*** –0.117*** –0.117*** –0.135 –0.135 –0.135 –0.135

(0.025) (0.025) (0.025) (0.092) (0.092) (0.092) (0.092)
τ̂ml

a,10 –0.117*** –0.117*** –0.117*** –0.132 –0.132 –0.132 –0.132
(0.025) (0.025) (0.025) (0.093) (0.093) (0.093) (0.093)

C. Unnormalized estimates:
τ̂ml

a –0.100*** –0.070*** –0.131*** 0.286** 0.143 –0.073 –0.216**
(0.025) (0.026) (0.025) (0.113) (0.102) (0.093) (0.093)

τ̂ml
t = τ̂ml

a,1 –0.099*** –0.069*** –0.129*** 0.282** 0.140 –0.072 –0.213**
(0.025) (0.025) (0.025) (0.111) (0.100) (0.092) (0.091)

τ̂ml
a,0 –0.102*** –0.071*** –0.133*** 0.291** 0.145 –0.074 –0.220**

(0.026) (0.026) (0.026) (0.115) (0.104) (0.094) (0.094)

Outcome measurement:
Cents �
Dollars �
$1000s �
$100,000s �
1 if worked, 0 otherwise �
2 if worked, 1 otherwise �
1 if did not work, 0 otherwise �
Observations 394,840 394,840 394,840 220,502 220,502 220,502 220,502

NOTE: The data are Farbmacher, Guber, and Vikström’s (2018) subsample of the 1980 U.S. Census, which is based on Angrist and Evans (1998). The outcome is an indicator for
whether a woman worked for pay in the preceding year (“labor force participation”) or log annual income, with income measured in cents, dollars, $1000s, or $100,000s
prior to the log transformation. In the case of labor force participation, we also recode the outcome as 2 if worked for pay and 1 otherwise; and as 0 if worked for pay
and 1 otherwise. In the latter case, we report the additive inverse of each estimate. The treatment is an indicator for whether a woman has at least three children. The
instrument is an indicator for whether a woman’s first two children are either two boys or two girls. The logit model is used for the instrument propensity score, with the
unknown parameters estimated using maximum likelihood or the moment conditions in (9). The set of covariates consists of age, age at first birth, sex of the first and
second children, and indicators for whether Black, whether Hispanic, and whether another race. Standard errors are in parentheses. For 2SLS, we use robust standard
errors. For the remaining estimators, we calculate the standard errors using the asymptotic variance formulas in the online appendix.

*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

estimates are economically meaningful even if insignificant;
regardless, the lack of invariance is disconcerting. When we use
Kitagawa’s (2015) specification instead, all estimates are positive
and statistically different from zero, but more than twice as large
when wages are originally measured in cents rather than dollars.

4.3. Causal Effects of Childbearing (Angrist and Evans
1998)

In our third empirical application, we revisit Angrist and Evans’s
(1998) study of causal effects of childbearing using the sibling
sex composition instrument. Angrist and Evans (1998) use the
incidence of a twin birth and the sex of the first two children as
two alternative instruments for having at least three children in
a sample of women with two or more children. In what follows,
we restrict our attention to the sex composition instrument.

This study has been revisited in many papers, including
Farbmacher, Guber, and Vikström (2018). In what follows, we
use Farbmacher, Guber, and Vikström’s (2018) subsample of the
1980 U.S. Census that consists of all women aged 21–35 with
at least two children. The number of observations is 394,840,
which is nearly identical to the sample size in Angrist and Evans
(1998). Summary statistics for these data are reported in Table 2
of Angrist and Evans (1998). Our outcomes of interest are log
annual income and an indicator for labor force participation.
In the case of log income, we implicitly condition on reported

income being greater than zero (as in Sections 4.1 and 4.2). The
treatment is having more than two children. The set of covariates
consists of age, age at first birth, sex of the first and second
children, and indicators for whether Black, whether Hispanic,
and whether another race. The instrument is an indicator for
whether the first two children are of the same sex.

We consider a broader set of transformations of the outcome
variables relative to the previous applications. In the case of labor
force participation, we originally code working for pay as 1 and
not working for pay as 0. Subsequently, however, we also recode
working for pay as 2 and not working for pay as 1, as well as
not working for pay as 1 and working for pay as 0. In the case
of income, we consider four different units of measurement:
cents, dollars, thousands of dollars, and hundreds of thousands
of dollars. While the first and the last unit of measurement may
appear impractical for annual income, our goal is to demonstrate
the fragility of the unnormalized estimates with respect to such
transformations.

Table 4 reports our estimates of causal effects of childbear-
ing on labor market outcomes. Panels A and B, which report
2SLS and normalized weighting estimates, respectively, suggest
that these effects are negative and economically meaningful,
although the effects on log income are not statistically different
from zero. As in our replication of Angrist (1990), the differences
between the 2SLS and weighting estimates (as well as their



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 11

Table 5. Simulation designs.

Design A.1 Design A.2 Design B Design C Design D

μd(x, z) 4z 4 (z − 1) −1 + 2x + 2.122z −1 + 2x + 2.122z −1 + 2x + 2.122z
μy1 (x) 0.3989 0.3989 0.3989 9 (x + 3)2 9 (x + 3)2

μz(x) 2x − 1 2x − 1 2x − 1 2x − 1 x + x2 − 1

standard errors) are always very minor. Transformations of the
outcome variables do not influence any of the estimates.

Panel C of Table 4 reports the unnormalized estimates. The
fragility of these estimates is immediately evident. In the case
of income, the estimated effects of childbearing are positive and
highly significant when income is measured in cents, positive
and insignificant when in dollars, negative and insignificant
when in thousands of dollars, and negative and highly significant
when in hundreds of thousands of dollars. This is obviously very
disconcerting. Likewise, in the case of labor force participation,
the estimates are quite fragile, although less so than in the case
of income, perhaps because of the binary nature of the outcome.
Still, the estimates in column 3 are nearly twice larger than those
in column 2, even though the only difference between these two
columns is in a particular recoding of the binary outcome.

5. Simulation Study

In this section we use a simulation study to illustrate our findings
on the properties of weighting estimators of the LATE. To reduce
the number of researcher degrees of freedom, we focus on data-
generating processes from Heiler (2022), which leads to the
following system of equations:

Z = 1[u < π(X)],
π(X) = 1/

(
1 + exp (−μz(X) · θ0)

)
,

Dz = 1[μd(X, z) > v],
Y1 = μy1(X) + ε1,
Y0 = ε0,

where u and X are iid standard uniform,

⎛
⎝ ε1

ε0
v

⎞
⎠ ∼

N

⎛
⎝

⎡
⎣ 0

0
0

⎤
⎦ ,

⎡
⎣ 1 0 0.5

0 1 0
0.5 0 1

⎤
⎦

⎞
⎠, θ0 = ln((1 − δ)/δ), and

δ ∈ {0.01, 0.02, 0.05}. What remains to be specified is three func-
tions, namely μd(x, z), μy1(x), and μz(x). Our choices for these
functions are listed in Table 5. It is useful to note that, given these
choices and the fact that X has a standard uniform distribution, δ
is equal to the lowest possible value of the instrument propensity
score and (symmetrically) one minus the instrument propensity
score, that is, δ ≤ P(Z = 1 | X) ≤ 1 − δ. Thus, δ controls the
degree of overlap in the data.

Note that Designs A.1, B, C, and D in Table 5 are identical
to Designs A, B, C, and D, respectively, in Heiler (2022). It is
easy to see that Design A.1 corresponds to a setting with (near)
one-sided noncompliance, as P(D = 1 | Z = 1) = 	(4) =
0.99997, where 	(·) is the standard normal cdf. It follows that
there are essentially no never-takers in Design A.1. To illustrate
our findings from Section 3.4 on near-zero denominators, we are
also interested in a design with (nearly) no always-takers. This

is accomplished by Design A.2, which is identical to Design A.1
except for a small change to μd(x, z) that reverses the direction
of noncompliance. Indeed, in Design A.2, P(D = 1 | Z = 0) =
	(−4) = 0.00003, which means that there are essentially no
always-takers.

It is also useful to note that Designs A.1 and A.2 correspond
to the case of a fully independent instrument while in the
remaining designs the instrument is conditionally independent.
Additionally, in Designs A.1, A.2, and B, treatment effect het-
erogeneity is only due to the correlation between ε1 and v; in
Designs C and D, on the other hand, the dependence of μy1(X)

on X constitutes another source of heterogeneity. In the end, the
2SLS estimator that controls for X is expected to perform very
well in Designs A.1, A.2, and B but not necessarily elsewhere
(see Heiler 2022).

In our simulations, similar to Heiler (2022), we thus use the
2SLS estimator as a benchmark that the weighting estimators
will not be able to outperform in Designs A.1, A.2, and B while
almost certainly being able to do so in Designs C and D. We
also consider τ̂ cb

u , τ̂ml
u , τ̂ml

a,10, τ̂ml
a , τ̂ml

a,1 (= τ̂ml
t ), and τ̂ml

a,0, also
controlling for X. This leads to a misspecification in Design
D, where μz(X) is quadratic in X but we mistakenly omit the
quadratic term. We consider three sample sizes, N = 500,
N = 1000, and N = 5000, and 10,000 replications for each
combination of a design, a value of δ, and a sample size.

Our main results are reported in Tables B.1–B.5 in the online
appendix. For each estimator, we report the mean squared error
(MSE), normalized by the MSE of the 2SLS estimator, the abso-
lute bias, and the coverage rate for a nominal 95% confidence
interval.

In Design A.1, as expected, the 2SLS estimator outperforms
all weighting estimators of the LATE, with MSEs of these esti-
mators always at least 31% larger, and sometimes orders of mag-
nitude larger, than that of 2SLS. With better overlap and larger
sample sizes, all estimators have small biases. When overlap is
poor and/or samples small, 2SLS is better than the weighting
estimators in terms of bias, too. Coverage rates are close to the
nominal coverage rate for all estimators in all cases. At the same
time, in a comparison of different weighting estimators, three
of them, τ̂ml

t , τ̂ml
a , and τ̂ml

a,10, are very unstable when overlap
is sufficiently poor, δ ∈ {0.01, 0.02}, and samples are small,
N = 500. This is documented by very large MSEs in these cases.
However, as predicted by Section 3.4, τ̂ml

a,0, τ̂ml
u , and τ̂ cb

u do not
suffer from instability, even in the most challenging case with
δ = 0.01 and N = 500. This is because there are (nearly) no
never-takers in Design A.1. More generally, τ̂ cb

u and τ̂ml
u perform

better than τ̂ml
a,0, which is likely due to normalization.

Our results for Design A.2 are generally similar, except for
the relative performance of 2SLS in terms of bias and, especially,
the exact list of weighting estimators that suffer from instability.
Unlike in Design A.1, when overlap is poor and/or samples
small, the bias of 2SLS is not clearly smaller than that of (most
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of) the weighting estimators. Also, it is τ̂ml
a,0, τ̂ml

a,10, and perhaps
τ̂ml

a that suffer from instability in such cases—but clearly not
τ̂ml

t . As discussed in Section 3.4, this is because there are (nearly)
no always-takers in Design A.2. As before, τ̂ cb

u and τ̂ml
u perform

marginally better than the best unnormalized estimator (in this
case, τ̂ml

t ).
In Design B, the instrument is no longer fully independent

and noncompliance is no longer one sided. While 2SLS remains
dominant in terms of MSE, it is always outperformed by most
of the weighting estimators in terms of bias, often substantially
and sometimes by all of them. In a comparison of different
weighting estimators, τ̂ cb

u and τ̂ml
u remain best overall while τ̂ml

t ,
τ̂ml

a , and τ̂ml
a,10 clearly suffer from instability when overlap is

sufficiently poor and samples sufficiently small. The case of τ̂ml
a,0 is

borderline, which is perhaps due to the fact that there are many
more always-takers than never-takers in this design (although
both groups clearly exist, unlike before).

Next, in Design C, we introduce another source of treatment
effect heterogeneity through the dependence of μy1(X) on X.
The 2SLS estimator is no longer consistent for the LATE, which
is illustrated by its large bias in all cases, including the least
challenging case with δ = 0.05 and N = 5000. Given that we
define the coverage rate as the fraction of replications in which
the LATE is contained in a nominal 95% confidence interval, we
also obtain very low coverage rates for 2SLS, never exceeding
66% and approaching 0% when the sample size is sufficiently
large. Coverage rates for all the weighting estimators are close
to the nominal level when overlap is good and samples large
enough. The only weighting estimators that never suffer from
instability are τ̂ cb

u and τ̂ml
u , although τ̂ cb

u is now dominant, with
substantial improvements in MSE in all cases.

Finally, in Design D, the instrument propensity score is mis-
specified, as we mistakenly omit the quadratic in X. The 2SLS
estimator remains inconsistent, too, and its coverage rates are
close to 0% in all cases. While the weighting estimators clearly
differ in performance, sometimes in unexpected ways, the most
striking feature of the simulation results for Design D is the dom-
inance of τ̂ cb

u , in terms of MSE, bias, and coverage. The relative
efficiency of τ̂ cb

u , here and elsewhere, can be understood through
the lens of a heuristic argument in Heiler (2022), who explained
that covariate balancing implicitly regularizes the propensity
score estimates away from the boundary and thereby decreases
variance. It is also useful to note that, despite misspecification
of the instrument propensity score, the coverage rate for τ̂ cb

u
approaches the nominal level when overlap is sufficiently good
and samples sufficiently large, which is not the case for any other
estimator.

It seems natural to interpret the instability of different weight-
ing estimators of the LATE as a consequence of near-zero
denominators, as we have done so far. To corroborate this
interpretation, in Figures B.1–B.5 in the online appendix, we
present boxplots with simulation evidence on all estimators of
the proportion of compliers that we consider: the first-stage
coefficient on Z in 2SLS; the denominator of τ̂ml

u ; N−1 ∑N
i=1 κ̂i1,

N−1 ∑N
i=1 κ̂i0, and N−1 ∑N

i=1 κ̂i, with the maximum likelihood
propensity scores; the denominator of τ̂ cb

u ; and N−1 ∑N
i=1 κ̂i1 =

N−1 ∑N
i=1 κ̂i0, with the covariate balancing propensity scores.

A straightforward comparison of Tables B.1–B.5 with Figures

B.1–B.5 (in the online appendix) reveals that instability of
weighting estimators of the LATE is indeed associated with
situations in which the supports of their denominators, the
estimators of the proportion of compliers, are crossing zero.
In fact, it is not negative estimates of this proportion that are
particularly problematic, even if they make no logical sense,
but rather those estimates that are very close to zero, as this
results in dividing by “near zero” to construct an estimate of the
LATE, which leads to instability. Additional simulation evidence
is also provided in Figures C.1–C.45 in the online appendix,
which present histograms for each combination of an estimator,
a design, a value of δ, and a sample size. In cases with instability,
the normal approximation to the sampling distribution is clearly
inappropriate.

6. Conclusion

In this article we study the properties of several weighting
estimators of the local average treatment effect (LATE), which
are based on the identification results of Abadie (2003) and
Frölich (2007). We make several novel observations. First, we
show that some of the most popular weighting estimators of the
LATE are not translation invariant or scale invariant with respect
to the natural logarithm, which translates to their sensitivity
to the units of measurement when estimating the LATE in
logs and the centering of the outcome variable more generally.
In contrast, normalized weighting estimators generally have
these important properties. Second, we demonstrate that certain
weighting estimators of the LATE have an advantage of being
based on a denominator that is strictly greater than zero in
settings with one-sided noncompliance. There is only one esti-
mator under consideration in this article, originally proposed by
Uysal (2011), that possesses both these advantages. When the
instrument propensity score is estimated using an appropriate
covariate balancing approach, this estimator is also equivalent
to the one in Heiler (2022).

We illustrate our findings with three empirical applications
and a simulation study. In simulations, our preferred estimator
performs relatively well in every setting under consideration. In
empirical applications, we clearly document the lack of transla-
tion invariance and scale equivariance of the unnormalized esti-
mators. Our preferred estimator is fully robust to the underlying
transformations of the outcome data.

Supplementary Materials

The supplementary material contains additional details regarding the
review of recent empirical applications in Section 1, proofs of Proposition
3.2 and Proposition 3.5, derivations of the asymptotic variances of the
proposed estimators, additional simulation results, and data and code used
in Section 4.
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