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Abstract—Applied work often studies the effect of a binary variable (“treat-
ment”) using linear models with additive effects. I study the interpretation
of the OLS estimands in such models when treatment effects are hetero-
geneous. I show that the treatment coefficient is a convex combination of
two parameters, which under certain conditions can be interpreted as the
average treatment effects on the treated and untreated. The weights on these
parameters are inversely related to the proportion of observations in each
group. Reliance on these implicit weights can have serious consequences
for applied work, as I illustrate with two well-known applications. I de-
velop simple diagnostic tools that empirical researchers can use to avoid
potential biases. Software for implementing these methods is available in
R and Stata. In an important special case, my diagnostics require only the
knowledge of the proportion of treated units.

I. Introduction

MANY applied researchers study the effect of a binary
variable (“treatment”) on the expected value of an out-

come of interest, holding fixed a vector of control variables.
As noted by Imbens (2015), despite the availability of a
large number of semi- and nonparametric estimators for av-
erage treatment effects, applied researchers often continue to
use conventional regression methods. In particular, numerous
studies use ordinary least squares (OLS) to estimate

y = α + τd + Xβ + u, (1)

where y denotes the outcome, d denotes the treatment, and
X denotes the row vector of control variables, (x1, . . . , xK ).
Usually τ is interpreted as the average treatment effect (ATE).
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This estimation strategy is used in many influential papers in
economics (Voigtländer & Voth, 2012; Alesina, Giuliano, &
Nunn, 2013; Aizer et al., 2016), as well as in other disciplines.

The great appeal of the model in equation (1) comes from
its simplicity (Angrist & Pischke, 2009). At the same time,
however, a large body of evidence demonstrates the impor-
tance of heterogeneity in effects (Heckman, 2001; Bitler,
Gelbach, & Hoynes, 2006), which is explicitly ruled out by
this same model. In this paper, I contribute to the recent lit-
erature on interpreting τ, the OLS estimand, when treatment
effects are heterogeneous (Angrist, 1998; Humphreys, 2009;
Aronow & Samii, 2016). I demonstrate that τ is a convex
combination of two parameters, which under certain condi-
tions can be interpreted as the average treatment effects on the
treated (ATT) and untreated (ATU). Surprisingly, the weight
that is placed by OLS on the average effect for each group
is inversely related to the proportion of observations in this
group. The more units are treated, the less weight is placed on
ATT. One interpretation of this result is that OLS estimation
of the model in equation (1) is generally inappropriate when
treatment effects are heterogeneous.

It is also possible, however, to present a more pragmatic
view of my main result. I derive a number of corollaries of this
result that suggest several diagnostic methods that I recom-
mend to applied researchers. These diagnostics are applicable
whenever the researcher is (a) studying the effects of a binary
treatment, (b) using OLS, and (c) unwilling to maintain that
ATT is exactly equal to ATU. Typically, such a homogene-
ity assumption would be undesirably strong because those
choosing or chosen for treatment may have unusually high or
low returns from that treatment, which would directly con-
tradict the equality of ATT and ATU.

In deriving my diagnostics, I assume that the researcher is
ultimately interested in ATE, ATT, or both and that she wishes
to estimate the model in equation (1) using OLS but is con-
cerned about treatment effect heterogeneity. In this case, my
diagnostics are able to detect deviations of the OLS weights
from the pattern that would be necessary to consistently es-
timate a given parameter. These diagnostics are easy to im-
plement and interpret; they are bounded between 0 and 1 in
absolute value, and they give the proportion of the difference
between ATU and ATT (or between ATT and ATU) that con-
tributes to bias. Thus, if a given diagnostic is close to 0, OLS
is likely a reasonable choice, but if a diagnostic is far from 0,
other methods should be used.

In an important special case, these diagnostics become
particularly simple and immediate to report. If we wish to
estimate ATT, this rule-of-thumb variant of my diagnos-
tic is equal to the proportion of treated units, P (d = 1);
if our goal is to estimate ATE, the diagnostic is equal to
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2 × P (d = 1) − 1, twice the deviation of P (d = 1) from
50%. In short, OLS is expected to provide a reasonable ap-
proximation to ATE if both groups, treated and untreated, are
of similar size. If we wish to estimate ATT, it is necessary
that the proportion of treated units is very small.

It follows that OLS might often be substantially biased for
ATE, ATT, or both. How common are these biases in prac-
tice? In a subset of 37 estimates from Card, Kluve, and Weber
(2018), a survey of evaluations of active labor market pro-
grams, the mean proportion of treated units is 17.7%.1 Using
the rule-of-thumb variants of my diagnostics, I establish that
on average the difference between the OLS estimand and ATE
is expected to correspond to 64.6% of the difference between
ATT and ATU. Similarly, the expected difference between
OLS and ATT is on average equal to 17.7% of the difference
between ATU and ATT. In other words, these biases might
often be large.

The remainder of the paper is organized as follows. Sec-
tion II presents a leading example and the main theoretical
results. Section III discusses two empirical applications. In a
study of the effects of a training program (LaLonde, 1986),
OLS estimates are very similar to ̂ATT. Yet in a study of
the effects of cash transfers (Aizer et al., 2016), OLS esti-
mates are similar to ̂ATU. Section IV concludes. Proofs and
several extensions are provided in the online appendixes. The
main results are implemented in newly developed R and Stata
packages, hettreatreg.

II. A Weighted Average Interpretation of OLS

A. Leading Example

To illustrate the problem with OLS weights, consider the
classic example of the National Supported Work (NSW)
program. Because this program originally involved a social
experiment, the difference in mean outcomes between the
treated and control units provides an unbiased estimate of
the effect of treatment. LaLonde (1986) studies the perfor-
mance of various estimators at reproducing this experimental
benchmark when the experimental controls are replaced by an
artificial comparison group from the Current Population Sur-
vey (CPS) or the Panel Study of Income Dynamics (PSID).
Angrist and Pischke (2009) reanalyze the NSW–CPS data and
conclude that OLS estimates of the effect of NSW program on
earnings in 1978 are similar to the experimental benchmark
of $1,794.2 In particular, their richest specification delivers
an estimate of $794. As I will show, this conclusion is driven
by the small proportion of treated units in these data.

1This sample is restricted to studies that Card et al. (2018) coded as
“selection on observables” and “regression.”

2Subsequent to LaLonde (1986), these data were studied by Dehejia and
Wahba (1999), Smith and Todd (2005), and many others. Angrist and
Pischke (2009) analyze the subsample of the experimental treated units
constructed by Dehejia and Wahba (1999), combined with CPS-1 or CPS-
3, two of the nonexperimental comparison groups from CPS, constructed
by LaLonde (1986). In this replication, I focus on CPS-1.

In this example, ATT and ATU are likely to be substan-
tially different. This is because the treated group, unlike the
CPS comparison (untreated) group, was highly economically
disadvantaged. It is plausible that ATU might be 0 or, due to
the opportunity cost of program participation, even negative.
Also, only 1.1% of the sample was treated, so ATE and ATU
will be similar.

To demonstrate this, I modify the model in equation (1)
to include all interactions between d and X . Estimation of
this expanded model, again using OLS, allows us to sepa-
rately compute ̂ATE, ̂ATT, and ̂ATU. This method is usu-
ally referred to as “regression adjustment” (Wooldridge,
2010) or “Oaxaca–Blinder” (Kline, 2011; Graham & Pinto,
2022). Using the control variables that deliver the esti-
mate of $794, we obtain̂ATE = −$4,930,̂ATT = $796, and
̂ATU = −$4,996. It turns out that since ̂ATE and ̂ATU are
indeed negative, the OLS estimate and ̂ATE have differ-
ent signs. Moreover, if we represent the OLS estimate as a
weighted average of ̂ATT and ̂ATU with weights that sum to
unity, we can write $794 = ŵAT T × $796 + (1 − ŵAT T ) ×(−$4,996

)
, where ŵAT T is the weight on ̂ATT. Solving for

ŵAT T yields ŵAT T = 99.96%. In other words, the hypothet-
ical OLS weight on the effect on the treated is similar to the
proportion of untreated units, 98.9%.

This “weight reversal” is not a coincidence. As I demon-
strate below, the intuition from this example holds more gen-
erally, even though the OLS estimand is not necessarily a
convex combination of two parameters from a procedure that
controls for the full vector X .

B. Main Result

This section presents my main result, which focuses on the
algebra of OLS and descriptive estimands that I define below.
A causal interpretation of OLS also requires introducing the
notion of potential outcomes as well as certain conditions that
I discuss in section IIC, including an ignorability assumption.
However, this is not needed for my main result.

If L (· | ·) denotes the linear projection, we are interested
in the interpretation of τ in the linear projection of y on d and
X ,

L (y | 1, d, X ) = α + τd + Xβ, (2)

when this linear projection does not correspond to the (struc-
tural) conditional mean. Let

ρ = P (d = 1) (3)

be the unconditional probability of treatment and let

p (X ) = L (d | 1, X ) = αp + Xβp (4)

be the propensity score from the linear probability model or,
equivalently, the best linear approximation to the true propen-
sity score. Generally the specification in equations (2) and (4)
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can be arbitrarily flexible, so this approximation can be made
very accurate; in fact, we can think of equation (2) as partially
linear, where we may include powers and cross-products of
original control variables.

After defining p (X ), it is helpful to introduce two linear
projections of y on p (X ), separately for d = 1 and d = 0,
namely,

L [y | 1, p (X ), d = 1] = α1 + γ1 × p (X ) (5)

and

L [y | 1, p (X ) , d = 0] = α0 + γ0 × p (X ) . (6)

Note that equations (4), (5), and (6) are definitional. It is suffi-
cient for my main result that the linear projections introduced
so far exist and are unique.

Assumption 1. (i) E(y2) and E(‖X‖2) are finite. (ii) The
covariance matrix of (d, X ) is nonsingular.

Assumption 2. V [p (X ) | d = 1] and V [p (X ) | d = 0] are
nonzero, where V (· | ·) denotes the conditional variance
(with respect to E [p (X ) | d = j], j = 0, 1).

Assumption 1 guarantees the existence and uniqueness of the
linear projections in equations (2) and (4). Similarly, assump-
tion 2 ensures that the linear projections in equations (5) and
(6) exist and are unique.3

The next step is to use the linear projections in equations
(5) and (6) to define the average partial linear effect of d as

τAPLE = (α1 − α0) + (γ1 − γ0) × E [p (X )] , (7)

as well as the average partial linear effect of d on group j
( j = 0, 1) as

τAPLE , j = (α1 − α0) + (γ1 − γ0) × E [p (X ) | d = j] . (8)

These estimands are well defined under assumptions 1 and
2 and have a causal interpretation under additional assump-
tions, as discussed in section IIC.4 When the linear projec-
tions in equations (5) and (6) represent the conditional mean
of y, the average partial linear effects of d overlap with its
average partial effects. It should be stressed, however, that
theorem 1, the main result of this paper, is more general and
requires only assumptions 1 and 2.

Theorem 1 (Weighted Average Interpretation of OLS). Un-
der assumptions 1 and 2,

τ = w1 × τAPLE ,1 + w0 × τAPLE ,0,

3Both assumptions are generally innocuous, although assumption 2 rules
out a small number of interesting applications, such as regression adjust-
ments in Bernoulli trials and completely randomized experiments. In these
cases, however, OLS is consistent for the average treatment effect under
general conditions (Imbens & Rubin, 2015).

4Moreover, τAPLE is similar to the “average regression coefficient” or
“average slope coefficient” in Graham and Pinto (2022), which is also a
descriptive estimand in the sense of Abadie et al. (2020).

where w1 = (1−ρ)×V[p(X )|d=0]
ρ×V[p(X )|d=1]+(1−ρ)×V[p(X )|d=0] and w0 = 1 −

w1 = ρ×V[p(X )|d=1]
ρ×V[p(X )|d=1]+(1−ρ)×V[p(X )|d=0] .

Proof. See online appendix A.

Theorem 1 shows that τ, the OLS estimand, is a convex com-
bination of τAPLE ,1 and τAPLE ,0. The definition of τAPLE , j

makes it clear that τ is equivalent to the outcome of a particu-
lar three-step procedure. In the first step, we obtain p (X ), the
propensity score. Next, in the second step, we obtain τAPLE ,1

and τAPLE ,0, as in equation (8), from two linear projections
of y on p (X ), separately for d = 1 and d = 0. This is anal-
ogous to the regression adjustment procedure in section IIA,
although now we control for p (X ) rather than the full vector
X . Finally, in the third step, we calculate a weighted average
of τAPLE ,1 and τAPLE ,0. The weight on τAPLE ,1, w1, is de-
creasing in V[p(X )|d=1]

V[p(X )|d=0] and ρ, and the weight on τAPLE ,0, w0,

is increasing in V[p(X )|d=1]
V[p(X )|d=0] and ρ.5 This is clearly undesirable,

since τAPLE = ρ × τAPLE ,1 + (1 − ρ) × τAPLE ,0.
This weighting scheme is also surprising: the more units

belong to group j, the less weight is placed on τAPLE , j , the ef-
fect for this group. There are several ways to provide intuition
for this result. One is provided in the next section. Another
follows from an alternative proof of theorem 1, which is pro-
vided with discussion in online appendix B2. It parallels the
intuition in Angrist (1998) and Angrist and Pischke (2009)
that OLS gives more weight to treatment effects that are better
estimated in finite samples.6

C. Causal Interpretation

The fact that theorem 1 requires only the existence and
uniqueness of several linear projections makes this result very
general. However, one concern about this result might be that
τAPLE ,1 and τAPLE ,0 do not necessarily correspond to the usual
(causal) objects of interest. To define these objects, we need
two potential outcomes, y(1) and y(0), only one of which
is observed for each unit, y = y(d ) = y(1) × d + y(0) ×
(1 − d ). The parameters of interest, ATE, ATT, and ATU, are
defined as τAT E = E [y(1) − y(0)], τAT T = E [y(1) − y(0) |
d = 1], and τATU = E [y(1) − y(0) | d = 0]. A causal inter-
pretation of OLS also entails the following assumptions.

Assumption 3 (Ignorability in Mean). (i) E [y(1) | X, d] =
E [y(1) | X ]; and (ii) E [y(0) | X, d] = E [y(0) | X ].

Assumption 4. (i) E [y(1) | X ] = α1 + γ1 × p (X ); and (ii)
E [y(0) | X ] = α0 + γ0 × p (X ).

Assumptions 3 and 4 ensure that τ admits a causal interpre-
tation. Assumption 3 is standard in the program evaluation

5A formal proof that the relationship between ρ and w1 (w0) is indeed
always negative (positive) is provided in online appendix B1. This proof
additionally assumes that the conditional mean of d is linear in X .

6This proof uses a result from Deaton (1997) and Solon, Haider, and
Wooldridge (2015) as a lemma. The main proof of theorem 1 uses a result
on decomposition methods from Elder, Goddeeris, and Haider (2010). See
online appendix A for more details.
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literature (Wooldridge, 2010). Assumption 4 is not com-
monly used. Sufficient for this assumption, but not necessary,
is that the conditional mean of d is linear in X and the condi-
tional means of y(1) and y(0) are linear in the true propensity
score, which is now equal to p (X ). Linearity of E (d | X )
is assumed in Aronow and Samii (2016) and Abadie et al.
(2020). This assumption is not necessarily strong, since X
might include powers and cross-products of original control
variables. It is also satisfied automatically in saturated mod-
els, as in Angrist (1998) and Humphreys (2009). The linear-
ity assumption for E [y(1) | p (X )] and E [y(0) | p (X )] dates
back to Rosenbaum and Rubin (1983) but is restrictive. See
also Imbens and Wooldridge (2009) and Wooldridge (2010)
for a discussion.

Corollary 1 (Causal Interpretation of OLS). Under assump-
tions 1, 2, 3, and 4,

τ = w1 × τAT T + w0 × τATU .

Proof. Assumption 3 implies that E [y(1) − y(0) | X ] =
E (y | X, d = 1) − E (y | X, d = 0). Then, assumption 4
implies that E [y(1) − y(0) | X ] = (α1 − α0) + (γ1 − γ0) ×
p (X ), which in turn implies that τAT T = τAPLE ,1 and τATU =
τAPLE ,0. This, together with theorem 1, completes the proof.

Corollary 1 states that under assumptions 1, 2, 3, and 4, the
OLS weights from theorem 1 apply to the causal objects of
interest, τAT T and τATU . Hence, τ has a causal interpretation.
The greater the proportion of treated units, the smaller is
the OLS weight on τAT T . Again, this is undesirable since
τAT E = ρ × τAT T + (1 − ρ) × τATU .

To aid intuition for this surprising result, recall that an im-
portant motivation for using the model in equation (1) and
OLS is that the linear projection of y on d and X provides the
best linear predictor of y given d and X (Angrist & Pischke,
2009). However, if our goal is to conduct causal inference,
then this is not, in fact, a good reason to use this method. Or-
dinary least squares is “best” in predicting actual outcomes,
but causal inference is about predicting missing outcomes,
defined as ym = y(1) × (1 − d ) + y(0) × d . In other words,
the OLS weights are optimal for predicting “what is.” Instead,
we are interested in predicting “what would be” if treatment
were assigned differently.

Intuition suggests that if our goal were to predict “what is”
and, without loss of generality, group 1 were substantially
larger than group 0, we would like to place a large weight
on the linear projection coefficients of group 1 (α1 and γ1),
because these coefficients can be used to predict actual out-
comes of this group. As noted by Deaton (1997) and Solon
et al. (2015), the OLS weights are consistent with this idea.
Indeed, theorem 1 also implies that

τ = [E (y | d = 1) − E (y | d = 0)] − (w0γ1 + w1γ0)

× {E [p (X ) | d = 1] − E [p (X ) | d = 0]} . (9)

Namely, the OLS estimand is equal to the simple difference
in means of y plus an adjustment term that depends on the
difference in means of p (X ) and a weighted average of γ1

and γ0. When group one is large, w0, the weight on γ1, is
large as well.

Conversely, if group 1 is large but our goal is to predict
missing outcomes, we need to place a large weight on α0 and
γ0 because these coefficients can be used to predict coun-
terfactual outcomes of group 1. To see this point, note that it
follows from the discussion in Imbens and Wooldridge (2009)
that when the conditional means of y(1) and y(0) are linear
in X , we can write

τAT E = [E (y | d = 1) −E (y | d = 0)] − [(1−ρ) β1 +ρβ0]

× [E (X | d = 1) − E (X | d = 0)] , (10)

where β1 and β0 are the coefficients on X in the conditional
means of y(1) and y(0), respectively. Equations (9) and (10)
reiterate the point of corollary 1 that τ and τAT E have a very
similar structure but differ substantially in how they assign
weights. Indeed, in the case of τAT E , when group 1 is large,
the weight on β1 is small, the opposite of what we have seen
for OLS.7

D. Implications of Theorem 1

There are several practical implications of my main result.
Throughout this section, I assume that the researcher is inter-
ested in estimating τAT E , τAT T , or both, and wishes to use OLS
to estimate the model in equation (1) but is concerned about
the implications of theorem 1 and corollary 1. In corollaries
2 and 3, I show how to decompose the difference between τ

and τAT E or τ and τAT T into components attributable to (a)
the difference between τAPLE ,1 and τAT T , (b) the difference
between τAPLE ,0 and τATU (jointly referred to as “bias from
nonlinearity”), and (c) the OLS weights on τAT T and τATU

(“bias from heterogeneity”).8 Because this paper generally
focuses on what I now term “bias from heterogeneity,” my
discussion below is restricted to this source of bias, which is
equivalent to implicitly making assumptions 3 and 4.

Corollary 2. Under assumptions 1 and 2,

τ−τAT E = w0 × (
τAPLE ,0 −τATU

) +w1 × (
τAPLE ,1 −τAT T

)
︸ ︷︷ ︸

bias from nonlinearity

+ δ × (τATU − τAT T )︸ ︷︷ ︸
bias from heterogeneity

,

7Note that the (infeasible) linear projection of the missing outcome, ym,
on d and X would solve our problem of weight reversal. The weights on
τAT T and τATU would still be different from ρ and 1 − ρ if V [p (X ) | d = 1]
and V [p (X ) | d = 0] were different; but at least the weight on τAT T (τATU )
would be increasing (decreasing) in ρ.

8Because bias from nonlinearity arises when assumptions 3 and/or 4 are
violated, it might be more accurate to refer to this component as “bias from
endogeneity and nonlinearity.” I use the former term for brevity.
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where δ = ρ − w1 = ρ2×V[p(X )|d=1]−(1−ρ)2×V[p(X )|d=0]
ρ×V[p(X )|d=1]+(1−ρ)×V[p(X )|d=0] . Also,

under assumptions 1, 2, 3, and 4,

τ − τAT E = δ × (τATU − τAT T ) .

Corollary 3. Under assumptions 1 and 2,

τ−τAT T = w0 × (
τAPLE ,0 −τATU

) +w1 × (
τAPLE ,1 −τAT T

)
︸ ︷︷ ︸

bias from nonlinearity

+ w0 × (τATU − τAT T )︸ ︷︷ ︸
bias from heterogeneity

.

Also, under assumptions 1, 2, 3, and 4,

τ − τAT T = w0 × (τATU − τAT T ) .

The proofs of corollaries 2 and 3 follow from simple alge-
bra and are omitted. These results show that regardless of
whether we focus on τAT E or τAT T , the bias from heterogene-
ity is equal to the product of a particular measure of hetero-
geneity, namely, the difference between τATU and τAT T , and
an additional parameter that is easy to estimate, δ for τAT E and
w0 for τAT T . While w0 is guaranteed to be positive under as-
sumptions 1 and 2, δ may be positive or negative. Both w0 and
δ, however, are bounded between 0 and 1 in absolute value.
Thus, w0 and |δ| can be interpreted as the percentage of our
measure of heterogeneity, τATU − τAT T , which contributes to
bias.9 It might be useful to report estimates of w0 and δ in
studies that use OLS to estimate the model in equation (1).

As an example, consider the empirical application in sec-
tion IIA. In this case, ŵ0 = 0.017 and δ̂ = −0.971. The in-
terpretation of these estimates is as follows: if our goal is to
estimate τAT T , using the model in equation (1) and OLS is
expected to bias our estimates by only 1.7% of the difference
between τATU and τAT T . If instead we wanted to interpret τ as
τAT E , our estimates would be biased by an estimated 97.1%
of the difference between τAT T and τATU . Thus, in this appli-
cation, it might perhaps be acceptable to interpret τ as τAT T

but clearly not as τAT E .

Assumption 5. V [p (X ) | d = 1] = V [p (X ) | d = 0].

The calculation of δ and w0 is further simplified under as-
sumption 5. If we use δ∗ and w∗

0 to denote the values of δ and
w0 in this special case, we can write δ∗ = 2ρ − 1 and w∗

0 = ρ.
In this setting, the knowledge of δ and w0 requires only infor-
mation on ρ, the proportion of units with d = 1. Of course, the

9To be precise, |δ| can be interpreted as the percentage of sgn(δ) ×
(τATU − τAT T ) that contributes to bias when focusing on τAT E . Both δ and
w0 also have an intuitive interpretation as the difference between the weight
that we should place on τAT T when focusing on τAT E or τAT T and the weight
that OLS actually places on this parameter. Indeed, δ is equal to the differ-
ence between ρ and w1. Similarly, w0 = 1 − w1.

special case where V [p (X ) | d = 1] = V [p (X ) | d = 0] is
hardly to be expected in practice. Still, δ∗ = 2ρ − 1 and
w∗

0 = ρ can potentially serve as a rule of thumb.
The practical implications of assumption 5 are particularly

clear when ρ is close to 0%, 50%, or 100%. When few units
are treated, τ � τAT T . When most of the units are treated,
τ � τATU . Finally, when both groups are of similar size, τ �
τAT E . This can also be seen from corollary 4:

Corollary 4. Under assumptions 1, 2, and 5,

τ = (1 − ρ) × τAPLE ,1 + ρ × τAPLE ,0.

Also, under assumptions 1, 2, 3, 4, and 5,

τ = (1 − ρ) × τAT T + ρ × τATU .

The proof follows immediately from simple algebra. Corol-
lary 4 provides conditions under which OLS reverses the
natural weights on τAPLE ,1 and τAPLE ,0 (or τAT T and τATU ).
Indeed, under assumption 5, τ is a convex combination of
group-specific average effects, with reversed weights at-
tached to these parameters. Namely, the proportion of units
with d = 1 is used to weight the average effect of d on group
0, and vice versa.

The results in this section allow empirical researchers to
interpret the OLS estimand when treatment effects are het-
erogeneous. Alternatively, it might be sensible to use any of
the standard estimators for average treatment effects under
ignorability, such as regression adjustment (see section IIA),
weighting, matching, and various combinations of these ap-
proaches.10 It might also help to estimate a model with homo-
geneous effects using weighted least squares (WLS). Indeed,
in online appendix B3, I demonstrate that when we regress y
on d and p (X ), with weights of 1−ρ

w0
for units with d = 1 and

ρ

w1
for units with d = 0, the WLS estimand is equal to τAPLE .

In practice, of course, τAPLE can also be obtained directly
from equation (7).

E. Related Work

This section discusses the relationship between my main
result and those in Angrist (1998) and Humphreys (2009).
These papers focus on saturated models with discrete covari-
ates, in which the estimating equation includes an indicator
for each combination of covariate values (“stratum”). In par-
ticular, Angrist (1998) provides a representation of τn in

L (y | d, x1, . . . , xS ) = τnd +
S∑

s=1

βn,sxs, (11)

10For recent reviews, see Imbens and Wooldridge (2009), Wooldridge
(2010), and Abadie and Cattaneo (2018).
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where x1, . . . , xS are stratum indicators. More precisely,
Angrist (1998) demonstrates that

τn =
S∑

s=1

P (xs = 1) × V (d | xs = 1)∑S
t=1 P (xt = 1) × V (d | xt = 1)

× τs (12)

where τs = E (y | d = 1, xs = 1) − E (y | d = 0, xs = 1). In
online appendix B4, I demonstrate that this result follows
from corollary 1 when the model for y is saturated.11 At the
same time, the interpretation of OLS in Angrist (1998) is dif-
ferent from theorem 1 and corollary 1. On the one hand, unlike
corollary 1 and Humphreys (2009), Angrist (1998) does not
restrict the relationship between τs and P (d = 1 | xs = 1) in
any way. On the other hand, theorem 1 and corollary 1 make it
arguably easier to identify whether in a given application the
OLS estimand will be close to any of the parameters of inter-
est (cf. corollaries 2 to 4). In particular, Angrist (1998) does
not recover a pattern of weight reversal, which is discussed
in detail in this paper.

Unlike Angrist (1998), Humphreys (2009) does not derive
a new representation of τn, instead presenting further analy-
sis of the result in equation (12). In particular, Humphreys
(2009) notes that τn can take any value between min(τs)
and max(τs). Then he demonstrates that τn is also bounded
by τAT T and τATU if we restrict the relationship between
τs and P (d = 1 | xs = 1) to be monotonic. According to
corollary 1, τ is a convex combination of τAT T and τATU

if, among other things, both potential outcomes are linear in
p (X ), which also implies a linear relationship between τs

and P (d = 1 | xs = 1) when the model for y is saturated. Of
course, this linearity assumption is stronger than the mono-
tonicity assumption in Humphreys (2009). However, in re-
turn, we are able to derive a closed-form expression for τ in
terms of τAT T and τATU , a major advantage over the earlier
literature, such as Angrist (1998) and Humphreys (2009).12

III. Empirical Applications

This section discusses two empirical illustrations of the-
orem 1 and its corollaries.13 In online appendixes C and D,
I discuss the implementation of these results in Stata and R.
Throughout this section, τAPLE , τAPLE ,1, and τAPLE ,0 are im-
plicitly treated as equivalent to τAT E , τAT T , and τATU , respec-
tively. Although this might be restrictive, I also demonstrate

11Also, note that Aronow and Samii (2016) show that this result in Angrist
(1998) is not specific to saturated models; instead, it is sufficient to assume
that the model for d is linear in X . My analysis in online appendix B4 covers
the results in both Angrist (1998) and Aronow and Samii (2016).

12Humphreys (2009) also provides a brief informal remark that the OLS
estimand, as represented in Angrist (1998), is similar to τAT T (τATU ) if
propensity scores are small (large) in every stratum. This is a special case
of the rule of thumb derived from corollaries 3 and 4. My rule of thumb
does not impose any such restrictions on the propensity score other than
the requirement that the unconditional probability of treatment is close to
0 or 1.

13In a follow-up paper, I apply these results in the study of racial gaps in
test scores and wages (Słoczyński, 2020).

that in both applications sample analogs of τAPLE , τAPLE ,1,
and τAPLE ,0, reported in the body of the paper, are similar to
other estimates of τAT E , τAT T , and τATU , reported in online
appendix E.

A. The Effects of a Training Program on Earnings

I first consider the example from section IIA in more detail.
This replication of the study of the effects of NSW program
in Angrist and Pischke (2009) constitutes an optimistic sce-
nario for OLS. In this application, as I explained in section
IIA, the effect for the treated group (ATT) is likely to be
substantially larger than the effect for the CPS comparison
group (ATU). Moreover, since the experimental benchmark
of $1,794 corresponds tôATT and not to ̂ATU, the researcher
should also focus on ATT. It turns out that my diagnostic for
estimating ATT, ŵ0, indicates that this parameter should ap-
proximately be recovered by OLS, even if treatment effects
are heterogeneous.14

The top and middle panels of table 1 reproduce the esti-
mates from Angrist and Pischke (2009) and report my di-
agnostics. The specification in column 4 was discussed in
section IIA. It turns out that ŵ0 is between 0.1% and 1.9%
for all specifications; similarly, the rule-of-thumb value of
this diagnostic, ŵ∗

0 , is, as always, equal to the proportion of
treated units (only 1.1% in this sample). These results are
very simple to interpret. As in section IID, we estimate that
the difference between the OLS estimand and ATT is less than
2% of the difference between ATU and ATT. In this case, it
might indeed be sensible to rely on the OLS estimates of the
effect of treatment.

The bottom panel of table 1 provides an application of
corollary 1 to these results. In other words, the estimates from
Angrist and Pischke (2009) are now decomposed into two
components, ̂ATT and ̂ATU. The difference between these
estimates is substantial. In column 4, while the estimate of
ATT is $928, ATU is estimated to be −$6,840. In other words,
the OLS estimate of $794, reported in Angrist and Pischke
(2009) and discussed in section IIA, is actually a weighted
average of these two estimates. The fact that it is close to $928,
and not to −$6,840, is a consequence of the small proportion
of treated units in this sample, 1.1%. The weight on $928,
ŵ1, is 98.3%, and the weight on −$6,840, ŵ0, is only 1.7%.

We might expect that if the proportion of treated units
was larger, the weight on ̂ATT would be smaller and the
performance of OLS in replicating the experimental bench-
mark would deteriorate. I confirm this conjecture in online
appendix E1 by quasi-discarding random subsamples of un-
treated units over a range of sample sizes. In particular, I rees-
timate the model in equation (1) using WLS, with weights of
1 for treated and 1

k for untreated units. Figures E1.1 to E1.4

14It is well known that in the NSW–CPS data, there is limited overlap in
terms of covariate values between the treated and untreated units (Dehejia
& Wahba, 1999; Smith & Todd, 2005). Thus, it is important to note that my
theoretical results in section II do not impose the overlap assumption.
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TABLE 1.—THE EFFECTS OF A TRAINING PROGRAM ON EARNINGS

(1) (2) (3) (4)

Original estimates

OLS −3,437*** −78 623 794
(612) (596) (610) (619)

Diagnostics

ŵ0 0.019 0.001 0.017 0.017
ŵ∗

0 = ρ̂ 0.011 0.011 0.011 0.011
δ̂ −0.970 −0.987 −0.971 −0.971
δ̂∗ = 2ρ̂ − 1 −0.977 −0.977 −0.977 −0.977

Decomposition

̂ATT −3,373*** −69 754 928
(620) (595) (619) (630)

ŵ1 0.981 0.999 0.983 0.983

̂ATU −6,753*** −6,289** −6,841*** −6,840***

(1,219) (2,807) (1,294) (1,319)
ŵ0 0.019 0.001 0.017 0.017

̂ATE −6,714*** −6,218** −6,754*** −6,751***

(1,206) (2,777) (1,281) (1,305)

Demographic controls
√ √ √

Earnings in 1974
√

Earnings in 1975
√ √ √

ρ̂ = P̂ (d = 1) 0.011 0.011 0.011 0.011
Observations 16,177 16,177 16,177 16,177

The estimates in the top panel correspond to column 2 in table 3.3.3 in Angrist and Pischke (2009, p. 89). The dependent variable is earnings in 1978. Demographic controls include age, age squared, years of
schooling, and indicators for married, high school dropout, Black, and Hispanic. For treated individuals, earnings in 1974 correspond to real earnings in months 13 to 24 prior to randomization, which overlaps with
calendar year 1974 for a number of individuals. Formulas for w0, w1, and δ are given in theorem 1 and corollary 2. Following these results, OLS = ŵ1 × ÂTT + ŵ0 × ÂTU. Estimates of ATE, ATT, and ATU are
sample analogs of τAPLE , τAPLE ,1, and τAPLE ,0, respectively. Also, ÂTE = ρ̂ × ÂTT + (1 − ρ̂) × ÂTU. Huber–White standard errors (OLS) and bootstrap standard errors (ÂTE, ÂTT, and ÂTU) are in parentheses.
Statistically significant at ∗10%, ∗∗5%, and ∗∗∗1%.

show that in this application WLS estimates become more
negative as k increases. This is because larger values of k
correspond to greater proportions of untreated units being
“discarded,” and hence larger weights on ̂ATU, which is sub-
stantially more negative than ̂ATT.

Additional extensions of my analysis are also presented
in online appendix E1. For each specification in table 1, I
provide both a linear and a nonparametric estimate of the
conditional mean of the outcome given p (X ), separately for
treated and untreated units (figures E1.5 to E1.8). A visual
comparison of both estimates provides an informal test of
assumption 4, which is necessary for a causal interpretation of
τAPLE , τAPLE ,1, and τAPLE ,0. The linearity assumption appears
to be approximately satisfied for the treated but usually not
for the untreated units.

Thus, as a robustness check, I also report a number of alter-
native estimates of the effects of NSW program in table E1.1.
I consider regression adjustment, as in section IIA, as well
as matching on p (X ) and on the logit propensity score.15 In
each case, I separately estimate ATE, ATT, and ATU. These
estimates are consistent with the claim that the general pat-
tern of results in table 1 is driven by the OLS weights. The

15In particular, the estimates discussed in section IIA are reported in col-
umn 4 of the bottom panel of table E1.1.

estimates of ATE and ATU are always negative and large
in magnitude; the estimates of ATT are much closer to the
experimental benchmark.

Finally, I repeat the following exercise from section IIA.
When we match the OLS estimates in table 1 with the cor-
responding estimates of ATT and ATU in table E1.1, we can
write τ̂ = ŵAT T × τ̂AT T + (1 − ŵAT T ) × τ̂ATU . Unless τ̂AT T

and τ̂ATU are sample analogs of τAPLE ,1 and τAPLE ,0, ŵAT T

does not need to be bounded between 0 and 1. Yet we can
solve for ŵAT T for each set of estimates. The mean of ŵAT T

across all sets of estimates in table E1.1 is 98.3%, which is
nearly identical to the sample proportion of untreated units,
98.9%. This is reassuring for my claims.

B. The Effects of Cash Transfers on Longevity

In my second application, I replicate a recent paper by
Aizer et al. (2016) and study the effects of cash transfers on
longevity of the children of their beneficiaries, as measured
by their log age at death. In particular, Aizer et al. (2016) an-
alyze the administrative records of applicants to the Mothers’
Pension (MP) program, which supported poor mothers with
dependent children in pre–World War II United States. In this
study, the untreated group consists only of children of mothers
who applied for a transfer and were initially deemed eligible
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TABLE 2.—THE EFFECTS OF CASH TRANSFERS ON LONGEVITY

(1) (2) (3) (4)

Original estimates

OLS 0.0157*** 0.0158*** 0.0182*** 0.0167***

(0.0058) (0.0059) (0.0062) (0.0061)

Diagnostics

ŵ0 0.861 0.870 0.784 0.784
ŵ∗

0 = ρ̂ 0.875 0.875 0.875 0.875
δ̂ 0.736 0.745 0.659 0.659
δ̂∗ = 2ρ̂ − 1 0.750 0.750 0.750 0.750

Decomposition

̂ATT 0.0129** 0.0149** 0.0097 0.0089
(0.0064) (0.0071) (0.0078) (0.0079)

ŵ1 0.139 0.130 0.216 0.216

̂ATU 0.0162*** 0.0160*** 0.0206*** 0.0188***

(0.0057) (0.0059) (0.0063) (0.0064)
ŵ0 0.861 0.870 0.784 0.784

̂ATE 0.0133** 0.0150** 0.0110 0.0102
(0.0063) (0.0068) (0.0073) (0.0074)

State fixed effects
√

County fixed effects
√ √

Cohort fixed effects
√ √ √ √

State characteristics
√ √ √

County characteristics
√

Individual characteristics
√ √ √

ρ̂ = P̂ (d = 1) 0.875 0.875 0.875 0.875
Observations 7,860 7,859 7,859 7,857

The estimates in the top panel correspond to columns 1 to 4 in panel A of table 4 in Aizer et al. (2016, p. 952). The dependent variable is log age at death, as reported in the MP records (columns 1 to 3) or on
the death certificate (column 4). State, county, and individual characteristics are listed in table E2.1 in online appendix E2. Formulas for w0, w1, and δ are given in theorem 1 and corollary 2. Following these results,

OLS = ŵ1 × ÂTT + ŵ0 × ÂTU. Estimates of ATE, ATT, and ATU are sample analogs of τAPLE , τAPLE ,1, and τAPLE ,0, respectively. Also, ÂTE = ρ̂ × ÂTT + (1 − ρ̂) × ÂTU. Huber–White standard errors (OLS)
and bootstrap standard errors (ÂTE, ÂTT, and ÂTU) are in parentheses. Statistically significant at ∗10%, ∗∗5%, and ∗∗∗1%.

but were ultimately rejected. This strategy is used to ensure
that treated and untreated individuals are broadly comparable,
and hence an ignorability assumption might be plausible.
Nevertheless, rejected mothers were slightly older and came
from slightly smaller and richer families than accepted moth-
ers. Thus, as before, there is no reason to believe that ATT
and ATU are equal, although it is perhaps less clear a priori
which is larger. Unlike in section IIIA, it seems plausible that
the researcher might be interested in either the average effect
of cash transfers, ATE, or in their average effect for accepted
applicants, ATT.

The top and middle panels of table 2 reproduce the baseline
estimates from Aizer et al. (2016) and report my diagnostics.
While the OLS estimates are positive and statistically sig-
nificant, my diagnostics indicate that these results should be
approached with caution. Namely, treated units constitute the
vast majority (or 87.5%) of the sample. It follows that OLS is
expected to place a disproportionately large weight on ̂ATU,
in which case the OLS estimates might be very biased for both
ATE and ATT (see corollaries 2 and 3). Indeed, my estimates
of δ suggest that the difference between the OLS estimand
and ATE is equal to 65.9% to 74.5% of the difference be-
tween ATU and ATT. Also, the estimates of w0 suggest that
the difference between OLS and ATT corresponds to 78.4%

to 87.0% of this measure of heterogeneity. The estimates of
δ∗ and w∗

0 are similar. It turns out that in this application the
OLS estimates might be substantially biased for both of our
parameters of interest. This would be a pessimistic scenario
for OLS.

The results in the bottom panel of table 2 suggest that these
biases are indeed substantial. In this panel, following corol-
lary 1, each OLS estimate from Aizer et al. (2016) is repre-
sented as a weighted average of estimates of two effects, on
accepted (ATT) and rejected (ATU) applicants. The estimates
of ATU are consistently larger than those of ATT. Thus, OLS
overestimates both ATE (since δ̂ > 0) and ATT. While the
implicit OLS estimates of these parameters remain statisti-
cally significant in columns 1 and 2, this is no longer the case
in columns 3 and 4, following the inclusion of county fixed
effects. Perhaps more importantly, these estimates of ATT are
half smaller than the corresponding OLS estimates. Clearly,
this difference is economically quite meaningful.

To assess the robustness of these findings, I present sev-
eral extensions of my analysis in online appendix E2. The
informal test of assumption 4, as discussed in section IIIA,
appears to suggest that the conditional mean of the outcome
given p (X ) is approximately linear for both the treated and
untreated units (see figures E2.5 to E2.8). I also report a
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number of alternative estimates of the effects of cash transfers
in table E2.1. These additional results support my conclusion.
Only one in twelve estimates of ATT is statistically different
from 0, and four of the insignificant estimates are negative.
While it is possible that cash transfers increase longevity, the
OLS estimates reported in Aizer et al. (2016) are almost cer-
tainly too large. Interestingly, this bias appears to be driven
by the implicit OLS weights on ATT and ATU, the focus of
this paper.16

IV. Conclusion

This paper proposes a new interpretation of the OLS esti-
mand for the effect of a binary treatment in the standard linear
model with additive effects. According to the main result of
this paper, the OLS estimand is a convex combination of two
parameters, which under certain conditions are equivalent to
the average treatment effects on the treated (ATT) and un-
treated (ATU). Surprisingly, the weights on these parameters
are inversely related to the proportion of observations in each
group, which can lead to substantial biases when interpreting
the OLS estimand as ATE or ATT.

One lesson from this result is that it might be preferable, as
suggested by a body of work in econometrics, to use any of the
standard estimators of average treatment effects under ignor-
ability, such as regression adjustment, weighting, matching,
and various combinations of these approaches. Empirical re-
searchers with a preference for OLS might instead want to use
the diagnostic tools that this paper also provides. These diag-
nostics, which are implemented in the hettreatreg pack-
age in R and Stata, are applicable whenever the researcher
is studying the effects of a binary treatment, using OLS, and
unwilling to maintain that ATT is exactly equal to ATU. In
an important special case, these diagnostics require only the
knowledge of the proportion of treated units.

16I also repeat two further exercises from section IIIA. First, after I
reestimate the model in equation (1) using WLS, with weights of 1 for
treated and 1

k for untreated units, I demonstrate in figures E2.1 to E2.4
that these estimates become more positive as k increases. As before, larger
values of k translate into larger weights on ÂTU, which is now greater than
ÂTT. Second, when I use the estimates of ATT and ATU in table E2.1 to
recover the hypothetical OLS weights, I obtain 22.8% as the mean of ŵAT T .
This is reasonably similar to the proportion of untreated units, 12.5%.
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