
A General Double Robustness Result for

Estimating Average Treatment Effects∗
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1 Introduction

In causal inference settings, doubly robust estimators involve models for both the

propensity score and the conditional mean of the outcome, and remain consistent

if one of these models (but not both) is misspecified. In this paper, we unify and

extend some of the recent literature on doubly robust estimators by providing a very

general identification result which accounts for the majority of interesting problems.

We cover both binary and multi-valued treatments; the average treatment effect,

the average treatment effect on the treated, and average treatment effects for other

subpopulations of interest; distribution, quantile, and inequality treatment effects;

local average treatment effects in a setting with an instrumental variable; unnormal-

ized and normalized weighting; and linear, logistic, and exponential mean functions.

Inverse-probability weighting (IPW) is also easily shown to be a special case within

our approach. As far as we know, this is the first paper to consider all these prob-

lems jointly and provide such a general identification result. Moreover, unlike in the

majority of recent studies, our parameters of interest are defined as a solution to

a population optimization problem, and not to a moment condition. This has an

important advantage when the response or outcome variable has restricted range, as

estimators based on moment conditions can produce estimated means outside the

range of logical values – unless one makes some rather ad hoc adjustments. Here we

extend the approach of Wooldridge (2007), who studied weighted objective functions

in a missing data setting, along several useful dimensions. Our approach also carefully

explains the anatomy of double robustness in a very general setting.

The remainder of the paper is organized as follows. In Section 2, we review the

statistical and econometric literature on doubly robust estimators. In Section 3, we

introduce our notation as well as assumptions and estimands; we also present our main
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identification result (in Section 3.2). In Section 4, we discuss several applications of

this approach. In Section 5, we discuss estimation. Further, we summarize our main

findings in Section 6. Finally, in Appendix B, we discuss implementation of our

estimation methods.

2 Background

Augmented inverse-probability weighting (AIPW), a standard class of doubly robust

estimators, was introduced in the missing data literature by Robins et al. (1994).1

There are two equivalent ways of writing an AIPW estimator: either as an IPW

estimator, augmented with an additional term (based on imputation), or as an im-

putation estimator, augmented with an additional term (based on reweighting of

prediction errors).2 Either of these adjustment terms can be understood as a form

of bias correction, but it is this second formulation which arguably provides good

intuition for the additional robustness of this estimator. When the conditional mean

is correctly specified, the adjustment term – again, based on reweighting of prediction

errors – has expectation zero. When the propensity score is correctly specified, this

same term consistently estimates the bias of imputation. The resulting estimator is

asymptotically normal and locally efficient: when both models are correctly specified,

AIPW achieves the semiparametric efficiency bound.

That this estimator is robust to misspecification of at most one of the working

models was demonstrated in later work by Scharfstein et al. (1999), and the term

“doubly robust” was introduced by Robins et al. (2000). Doubly robust estimators

continue to be an important topic of research in statistics, both in causal inference

1However, Kang and Schafer (2007) and Long et al. (2012) noted that this approach to estimation
goes back at least as far as Cassel et al. (1976).

2A non-technical introduction to AIPW estimators was provided by Glynn and Quinn (2010).
See also Kang and Schafer (2007) and Tan (2007).
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and in missing data settings. For example, Bang and Robins (2005) extended this

methodology to several panel data models and represented their estimators – which

is similar to Scharfstein et al. (1999), but otherwise not typical – as imputation es-

timators, with the inverse of the propensity score included as an additional control

variable. Tan (2006a) developed an alternative AIPW estimator, which might provide

either an efficiency gain – if the propensity score is correctly specified – or bias re-

duction – if the propensity score is misspecified, but the conditional mean is correctly

specified. Early simulation studies were presented by Lunceford and Davidian (2004)

and Kang and Schafer (2007). While the former paper strongly encouraged “routine

use of [AIPW] in practice”, the latter study was somewhat pessimistic; its results

triggered a considerable debate, with comments of Ridgeway and McCaffrey (2007),

Robins et al. (2007), Tan (2007), Tsiatis and Davidian (2007), and a rejoinder.

Following this debate, further AIPW estimators – with better properties – have

been developed. In particular, Cao et al. (2009) and Tan (2010) provided new esti-

mators with increased efficiency and improved robustness against very small values

of the propensity score. An estimator with more desirable efficiency properties was

also studied by Rotnitzky et al. (2012). On the other hand, Hu et al. (2012) proposed

an estimator with increased robustness to model misspecification: first, covariate

information is collapsed into a two-dimensional score, with one dimension for the

conditional mean of the outcome and the other for the propensity score; second, a

regression of the outcome on this score is estimated using nonparametric methods.

A sufficient condition for consistency of this estimator is that either of the two di-

mensions captures the “core” of the corresponding pattern. Finally, Vermeulen and

Vansteelandt (2015) focused on bias reduction, and developed an estimator which

minimizes the asymptotic bias under misspecification of both working models.

One shortcoming of the AIPW approach – which is clear from the discussion
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in Kang and Schafer (2007) and Robins et al. (2007) – is that the estimated mean

functions are not only sensitive to extreme values of the propensity score estimates,

but they can actually produce estimates outside the logically consistent range when

the response is bounded in some way.

In recent years, there has also been substantive interest in doubly robust esti-

mators in the econometric literature. Hirano and Imbens (2001) provided an early

application to data on right heart catheterization; however, these authors used linear

models for a binary outcome, which necessarily does not fully exploit the double ro-

bustness result. Wooldridge (2007) developed a general framework for missing data

problems and studied doubly robust estimators of the average treatment effect (ATE),

including inverse-probability weighted QML estimators with logistic and exponential

mean functions.3 An important benefit of the approach in Wooldridge (2007) is that

provided one chooses the conditional mean function so that it coheres with the range

of the response variable, estimated counterfactual means are always within the log-

ical range. Cattaneo (2010) used “doubly robust moment conditions” to construct

efficient semiparametric estimators of multi-valued treatment effects, also extending

the scope of applications to quantile treatment effects (QTEs). More recently, Gra-

ham et al. (2012) derived a new IPW estimator (“inverse probability tilting”), which

replaces the maximum likelihood estimate of the propensity score with a particular

method of moments estimate. This new estimator shares the properties of double

robustness and local efficiency with previous methods, but it has smaller asymptotic

bias under certain conditions.4

3This approach was applied to a multi-valued treatment effect framework and to a decomposition
framework by Uysal (2015) and Kaiser (2016), respectively. Both of these papers also considered an
extension to identification and estimation of the average treatment effect on the treated (ATT).

4In a different setting, Kline (2011) demonstrated that parametric imputation – also referred to
as Oaxaca–Blinder – is also doubly robust in a particular way; namely, it has an alternative IPW
representation, in which the weights are based on a linear model for the treatment odds. A similar
result had also been demonstrated by Robins et al. (2007).
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While the majority of these previous papers used parametric models for the condi-

tional mean and the propensity score, and allowed one of these models to be arbitrar-

ily misspecified, Rothe and Firpo (2015) studied the properties of “semiparametric

doubly robust estimators” in which this first stage remains fully nonparametric. In

this context, misspecification is no longer an issue, but Rothe and Firpo (2015) nev-

ertheless demonstrated that such estimators, which exploit “doubly robust moment

conditions” (as in Cattaneo, 2010), have desirable asymptotic properties, since their

special structure automatically removes most of the largest “second order” terms.

These same moment conditions were also used in recent papers by Belloni et al.

(2014, 2015) and Farrell (2015) for treatment evaluation with high-dimensional data,

including settings with more covariates than observations.

The discussion so far has focused on doubly robust estimators that require the

treatment variable to be unconfounded conditional on covariates. A much smaller

literature – primarily in statistics – has considered estimation of various parameters of

interest in instrumental variable (IV) settings. An early contribution by Tan (2006b)

studied doubly robust estimation of the local average treatment effect (LATE) in a

model which, unlike Imbens and Angrist (1994), includes additional covariates. The

estimator of Tan (2006b) is consistent if either the instrument propensity score is

correctly specified, or both the first stage and the conditional mean of the outcome

are correctly specified. Doubly robust estimators of the LATE were also studied by

Uysal (2011) as well as in an early version of Rothe and Firpo (2015). Finally, a recent

paper by Ogburn et al. (2015) studied doubly robust estimation of the dependence of

the local average treatment effect on a subset of pre-treatment covariates.

Estimation of other parameters of interest has also been considered. In particular,

Okui et al. (2012) studied doubly robust estimation of a finite-dimensional parameter

indexing the dependence of the conditional mean of the outcome on the endoge-
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nous treatment variable. Tchetgen Tchetgen and Vansteelandt (2013) discussed a

control function approach to estimating the conditional average treatment effect on

the treated in an instrumental variable model; subsequently, a similar method for

estimating the unconditional ATT was developed by Liu et al. (2015).

The current paper contributes to several strands of the literature on doubly robust

estimators. We build on the framework of Wooldridge (2007) and expand it in several

useful directions by focusing on treatment effects estimation. As mentioned above,

we prefer the setup in Wooldridge (2007) because it leads to doubly robust estimation

for important nonlinear as well as linear conditional mean specifications, and ensures

that estimates of ATEs lie within logical ranges when the response variable is bounded

in some way. A related point is that estimators based on a weighted objective func-

tion tend to be less sensitive to lots of variation in the estimated propensity score.

Wooldridge (2007) only considered estimation of the ATE over the entire population,

and did not present results for doubly robust estimation of ATEs for subpopulations.

An important aspect of our unified framework is the introduction of an indicator that

can select out subpopulations, thereby providing simple doubly robust estimators for

a wide variety of treatment effects. This includes not only subpopulations defined by

pre-treatment covariates, or average treatment effects for different treatment groups,

but it introduces new possibilities. For example, after treatment has been assigned,

some units may exhibit observed behavior – such as getting more education – and we

can estimate average treatment effects for such populations.

To summarize, our paper shows how doubly robust estimators of various average

treatment effects for the most common response variables can be studied in a single

framework. This same framework can be used to obtain doubly robust estimators

of distribution, quantile, and inequality treatment effects, as well as of the local

average treatment effect (in an instrumental variable setting). Previous approaches
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are limited along one or more dimensions, either focusing only on the ATE, using only

linear conditional means, or using moment conditions that can produce nonsensical

estimates. As a technical improvement over Wooldridge (2007) and several of the

other cited papers, we demonstrate identification using a conditional mean version of

unconfoundedness, rather than full conditional independence between the treatment

and potential outcomes.

3 Identification

We now introduce our notation and discuss the population parameters of interest.

Also, we detail the assumptions that are needed for identification of these estimands

as well as outline our main identification result. To avoid confusion with our notation,

the discussion of distribution, quantile, and inequality treatment effects – as well as

of our extensions to instrumental variable models – is deferred to Section 4. As will

be explained, these applications are easily expressed within the following framework.

3.1 Notation and Assumptions

We assume some treatment to take on G+ 1 different values, labeled {0, 1, 2, . . . , G}.

For a given population, let W represent the treatment assignment. Typically, W = 0

represents the absence of treatment, but this is not important for what follows. The

leading case is G = 1, and then W = 0 denotes control and W = 1 denotes treatment.

For each level of treatment, g, we assume counterfactual outcomes, Yg, g ∈

{0, 1, 2, . . . , G}. Most of the common treatment effects are defined in terms of the

mean values of the Yg. For example, let

µg = E(Yg), g = 0, 1, 2, . . . , G (1)
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denote the mean values of the counterfactual outcomes across the entire population.

Assuming g = 0 to be the control, the average treatment effect of treatment level g is

τg,ate = E(Yg − Y0) = µg − µ0. (2)

We may also be interested in the average treatment effect for units actually receiving

this level of treatment, namely

τg,att = E(Yg − Y0|W = g) = E(Yg|W = g)− E(Y0|W = g). (3)

With more than two treatment levels, we can define similar quantities comparing any

two of them. The important point is that our goal is to estimate

E(Yg) or E(Yg|W = h) (4)

for treatment levels g and h.

Let X denote a vector of observed, pre-treatment covariates that predict treat-

ment and have explanatory power for the Yg. We assume that treatment is uncon-

founded conditional on X. We will refine this assumption when we state the general

results; the strongest form of unconfoundedness is conditional independence between

the treatment assignment and each counterfactual outcome:

W ⊥ Yg | X , g = 0, 1, 2, . . . , G, (5)

where “⊥” means “independent of” and “|” denotes “conditional on”. If D(·|·) denotes

conditional distribution, we can write unconfoundedness as D(W |Yg, X) = D(W |X).

In estimating the parameter τg,att, we will see that we only need to assume uncon-
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foundedness with respect to Y0, the counterfactual in the control state.

In what follows, it is helpful to define binary treatment indicators as

Wg = 1[W = g], g = 0, 1, 2, . . . , G (6)

as well as the generalized propensity score (Imbens, 2000) for treatment level g as

pg(x) = P(Wg = 1|X = x). (7)

Under conditional independence,

pg(X) = P(Wg = 1|Yg, X). (8)

In order to allow for a wide variety of treatment effects, we introduce a binary

variable, D, which we will also assume to be unconfounded with respect to each

Yg. In applications, D might be a deterministic function of X, in which case its

inclusion serves to isolate a subset of the population determined by pre-treatment

covariates. Another important case is when D is an indicator for a different level of

treatment. Yet another possibility is when D indicates a subpopulation formed after

the treatment assignment. For example, in the evaluation of a job training program,

some individuals might choose to obtain additional education unrelated to the job

training program. If D is an indicator representing “more schooling,” we would

not want to include D in X, as that would generally cause unconfoundedness to be

violated – see, for example, Wooldridge (2005). However, we may want to estimate

the average treatment effect of the job training program itself for the group that

subsequently sought additional schooling. Importantly, we will not have to impose

any restrictions on the dependence between W and D. As far as we know, ours is the
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first framework to consider this possibility.

In what follows we let η = P(D = 1) be the unconditional probability that D = 1

and assume that η > 0. The special case of P(D = 1) = 1 is important and is allowed.

Also, define the propensity score for D as

r(x) = P(D = 1|X = x). (9)

If D and Yg are conditionally independent, then

r(X) = P(D = 1|Yg, X), (10)

although this is not the version of unconfoundedness we use for our main result.

3.2 A General Result on Weighting

Our general result applies to any function of the potential outcome, Yg, and the ob-

served covariates. Let q(Yg, X) denote such a function, where we assume E [|q(Yg, X)|] <

∞. In the following lemma – which is crucial for our main result – we demonstrate

that, for all g, we can recover E [q(Yg, X)|D = 1] from the distribution of observable

variables.

Lemma 3.2: Assume that Wg and D are each unconfounded in conditional mean,

that is,

E [q(Yg, X)|Wg, X] = E [q(Yg, X)|X] (11)

E [q(Yg, X)|D,X] = E [q(Yg, X)|X] . (12)
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Define η = P(D = 1) > 0. Further, assume that pg(x) > 0 for all x ∈ X , where pg(x)

is defined in (7). Then,

1

η
· E
[
Wg

pg(X)
r(X)q(Yg, X)

]
= E [q(Yg, X)|D = 1] . � (13)

This lemma is fairly general, partly due to the inclusion of the auxiliary variable, D,

which defines our subpopulation of interest. The proof of this lemma uses uncon-

foundedness in the conditional mean separately for Wg and D. Naturally, if

E [q(Yg, X)|Wg, D,X] = E [q(Yg, X)|X] ,

then (11) and (12) both hold.

A number of applications of Lemma 3.2 are covered in Section 4. The proof of

Lemma 3.2 is straightforward and can be found in Appendix A.

4 Applications

Before considering doubly robust estimation, it is useful to see how some important

special cases in the literature fit into the current framework. We are primarily in-

terested in showing the population moments that establish identification, but the

formulas also suggest simple estimators of our parameters of interest.
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4.1 Average Treatment Effects under Unconfoundedness

Binary treatments: Let G = 1, W0 = 1−W1 = 1−W , and p0(X) = 1−p1(X) =

1− p(X). Then, with q(Y,X) = Y and Y = (1−W ) ·Y0 +W ·Y1, Lemma 3.2 implies

τate = E(Y1 − Y0) = E
[
W

p(X)
Y − 1−W

1− p(X)
Y

]
, (14)

with D = 1 in both cases. This expression leads directly to the standard IPW

estimator (Horvitz and Thompson, 1952). Similarly, we can use Lemma 3.2 to write

the average treatment effect on the treated as

τatt = E(Y1 − Y0|W = 1) =
1

P(W = 1)
· E
[
W · Y − 1−W

1− p(X)
p(X) · Y

]
, (15)

because D = W , η = P(W = 1), and r(X) = p(X). More generally, we can write the

average treatment effect for any subpopulation of interest as

E(Y1 − Y0|D = 1) =
1

η
· E
[
W

p(X)
r(X) · Y − 1−W

1− p(X)
r(X) · Y

]
, (16)

as long as this subpopulation is defined by D, a binary variable which is unconfounded

with respect to potential outcomes, conditional on X. A leading case is when D is a

deterministic function of X, so we are looking at a subpopulation determined by the

conditioning variables that appear in the propensity score.

Multi-valued treatments: Let Y = W0 · Y0 + W1 · Y1 + W2 · Y2 + · · · + WG · YG.

Then, with q(Y,X) = Y , Lemma 3.2 suggests that the average gain from switching

from the control group to treatment g, g ∈ {1, 2, . . . , G}, is

τg,ate = E(Yg − Y0) = E
[
Wg

pg(X)
Y − W0

p0(X)
Y

]
. (17)
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Similarly, the average treatment effect on those receiving treatment g, relative to the

control group, is

τg,att = E(Yg − Y0|W = g) =
1

P(W = g)
· E
[
Wg · Y −

W0

p0(X)
pg(X) · Y

]
. (18)

4.2 Distribution, Quantile, and Inequality Treatment Effects

Distribution treatment effects: In what follows, it is helpful to define an ex-

tended set of counterfactual outcomes, Yg(y) = 1[Yg ≤ y]. In other words, we can

create a set of binary variables, Yg(y), where y is any real number and Yg(y) = 1

whenever Yg ≤ y. Also, Y (y) = W0 · Y0(y) + W1 · Y1(y) + · · ·+ WG · YG(y). If we let

FYg denote the unconditional cdf of Yg, then, from Lemma 3.2, we can write:

FYg(y) = P(Yg ≤ y) = E [Yg(y)] = E
[
Wg

pg(X)
Y (y)

]
. (19)

As noted by Foresi and Peracchi (1995), when we vary the value of y, we can provide

a useful characterization of FYg . This idea was extended in a number of recent papers

(especially in Chernozhukov et al., 2013), and we will exploit this later. Now, using

(19), we can identify the distribution treatment effect (DTE) of treatment g as

τg,dte(y) = FYg(y)− FY0(y) = E
[
Wg

pg(X)
Y (y)− W0

p0(X)
Y (y)

]
. (20)

Previous studies of distribution treatment effects include Abadie (2002), Lee (2009),

Maier (2011), Chernozhukov et al. (2013), and Sant’Anna (2016). As far as we know,

however, ours is the first paper to consider doubly robust estimation of this parameter.
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Quantile treatment effects: There are many papers that consider identification

and estimation of quantile treatment effects (QTEs), defined as

τg,qte(t) = QYg(t)−QY0(t), (21)

where QYg(t) is the tth quantile of Yg. Unlike early contributions, which usually

modeled the quantiles directly (see, e.g., Abadie et al., 2002), we first obtain FYg

using (19). Then, we note that

QYg(t) = inf
{
u : FYg(u) ≥ t

}
. (22)

What follows,

τg,qte(t) = inf
{
u : FYg(u) ≥ t

}
− inf {v : FY0(v) ≥ t} . (23)

This approach to identifying quantile treatment effects was used by Cattaneo (2010),

Frandsen et al. (2012), Chernozhukov et al. (2013), Frölich and Melly (2013), Donald

and Hsu (2014), and Sant’Anna (2016), among others. However, only Cattaneo (2010)

discussed doubly robust estimation of QTEs, which we allow in Section 5. Also, our

approach to estimation differs from that in Cattaneo (2010).

Inequality treatment effects: A recent paper by Firpo and Pinto (2016) intro-

duced an alternative approach to studying distributional impacts of interventions.

Namely, such effects were modeled as differences in inequality measures between two

marginal distributions of potential outcomes. Let υ : Fυ → R be an inequality mea-

sure, say the coefficient of variation, the interquartile range, the Theil index, or the

Gini coefficient. As before, we first obtain FYg using (19). Then we note, following

15



Firpo and Pinto (2016), that the inequality treatment effect (ITE) can be written as

τg,ite = υ(FYg)− υ(FY0). (24)

In the concluding section of their paper, Firpo and Pinto (2016) suggested that study-

ing doubly robust estimators of ITEs would be an interesting avenue for further re-

search. Such estimators of these parameters follow from Section 5.

4.3 Extensions to Instrumental Variable Estimation

Our general result can be applied in contexts where we require instrumental variables

to provide exogenous variation in treatment assignment. In the following discussion

we need to introduce new notation. In particular, let some instrumental variable –

which satisfies the usual exclusion restriction – take on H+1 different values, labeled

{0, 1, 2, . . . , H}. Let Z represent the instrument assignment. We also define

Zh = 1[Z = h], h = 0, 1, 2, . . . , H. (25)

Further, we introduce the instrument propensity score for each Zh:

sh(x) = P(Zh = 1|X = x). (26)

If Z is unconfounded with respect to each counterfactual outcome and each counter-

factual treatment, conditional on X, we can use Lemma 3.2 to separately identify the

numerator and the denominator of the usual formula for the local average treatment

effect (LATE). More precisely, and similarly to Tan (2006b), we can identify this
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parameter of interest as

τh,late =
E
[

Zh

sh(X)
Y − Z0

s0(X)
Y
]

E
[

Zh

sh(X)
W − Z0

s0(X)
W
] , (27)

where both the numerator and the denominator are simply equal to the average effects

of Zh, compared with Z0, on the outcome and the treatment, respectively. In other

words, we identify these objects separately, using (17) in both cases.

We leave applications to identifying other parameters via instrumental variables

to future research.

4.4 Unnormalized and Normalized Weights

In the previous setup, given a random sample {(Wig, Di, Xi, Yi) : i = 1, 2, . . . , N},

Lemma 3.2 suggests how to consistently estimate µg,1 ≡ E [q(Yg, X)|D = 1]:

1

η̂

[
N−1

N∑
i=1

Wig

pg(Xi)
r(Xi)q(Yi, Xi)

]
, (28)

where η̂
p→ η > 0. One simple, unbiased and consistent estimator of η is

η̂ = N−1

N∑
i=1

Di = ND/N, (29)

where ND is the number of observations with Di = 1. The estimator of µg,1 is then

µ̂g,1,unnormalized = N−1
D

N∑
i=1

Wig

pg(Xi)
r(Xi)q(Yi, Xi). (30)

In special cases, several papers have discouraged empirical researchers from using

η̂ = ND/N , because it leads to a weighted average where the weights do not sum to
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unity. In particular, the weight for observation i is

1

ND

Wig

pg(Xi)
r(Xi), (31)

and these do not usually sum to unity across i. It is a simple adjustment to obtain a

consistent estimator whose weights are guaranteed to sum to unity. To choose such

weights, note that we can apply Lemma 3.2 to q(Yg, X) ≡ 1 to get

η = E
[
Wg

pg(X)
r(X)

]
, (32)

and so an alternative unbiased and consistent estimator of η is

η̂ = N−1

N∑
i=1

Wig

pg(Xi)
r(Xi). (33)

When we plug this estimator in (28) for η̂, we obtain

µ̂g,1,normalized =

[
N∑
i=1

Wig

pg(Xi)
r(Xi)

]−1 N∑
i=1

Wig

pg(Xi)
r(Xi)q(Yi, Xi) (34)

and now the weights,

[
N∑
j=1

Wjg

pg(Xj)
r(Xj)

]−1

Wig

pg(Xi)
r(Xi), (35)

necessarily sum to unity across i.

Many applications of inverse-probability weighted (IPW) estimators, including

those to doubly robust estimation, use normalized weights because the weights are

applied to an objective function, such as a squared residual or a quasi-log likelihood
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function. For example, to estimate µg = E(Yg), we can solve

min
mg∈R

N∑
i=1

Wig

pg(Xi)
(Yi −mg)

2, (36)

and the solution is easily seen to be the estimator with normalized weights.

5 Estimation

We now develop doubly robust (DR) estimators of various average treatment effects

by considering estimation of

µg,1 ≡ E(Yg|D = 1). (37)

As we saw in Section 4, various average treatment effects can be obtained by appro-

priate choice of D, where D = 1 simply defines a subpopulation of interest.

It is helpful to divide the argument into two subsections. The first part of the DR

result is when a conditional mean function is correctly specified, and here we need to

draw on important results from the literature on quasi-MLE estimation of correctly

specified conditional means. The second part requires an application of Lemma 3.2

and a basic understanding of the linear exponential family of distributions.

The setting is that for a counterfactual outcome Yg a parametric mean function is

specified, which we write as {mg(x, θg) : x ∈ X , θg ∈ Θg}. Along with the specification

of the mean function, we choose as an objective function a quasi-log likelihood (QLL)

from the linear exponential family (LEF). As discussed in Gourieroux et al. (1984) –

see also Wooldridge (2010, Chapter 13) – the LEF has the feature that it identifies the

parameters in a correctly specified conditional mean. What is somewhat less known
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is that if the QLL is chosen so that the conditional mean function represents the

so-called canonical link, then the unconditional mean is consistently estimated even

if the conditional mean function is misspecified. We use this fact in Section 5.2.

In what follows we assume regularity conditions such as smoothness of the condi-

tional mean functions in βg and enough finite moments so that standard consistency

and asymptotic normality results hold for quasi-maximum likelihood estimation.

5.1 Part 1: The Conditional Mean Is Correctly Specified

In this subsection we assume that the conditional mean is correctly specified which

means that, for some vector θog ∈ Θg,

E(Yg|X = x) = mg(x, θ
o
g), x ∈ X , (38)

where X is the support of X. As shown in Gourieroux et al. (1984), if q(Yg, X; θg) is

a QLL from a density in the LEF with mean function mg(x, θg) then it can be written

as

q(Yg, X; θg) = a [mg(X, θg)] + b(Yg) + Ygc [mg(X, θg)] . (39)

Gourieroux et al. (1984) use this structure to show that θog is a solution to

max
θg∈Θg

E[q(Yg, X; θg)|X] (40)

for all outcomes X, which means

E[q(Yg, X; θog)|X] ≥ E[q(Yg, X; θg)|X]. (41)

For our purposes, another important feature of the LEF family is that it will
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suffice to assume that treatment assignment Wg is unconfounded in the mean:

E (Yg|Wg, X) = E (Yg|X) ; (42)

we do not need the stronger conditional independence assumption in (5). This is

because b(Yg) does not depend on the parameters, and so we can drop it from the

objective function. The only other place in which Yg appears is to multiply a function

of X (and θg), and so it will suffice to impose (42).

We use parametric models for the propensity scores, pg(x), say Fg(x; γg). We

allow this model to be misspecified, but assume that the estimator settles down to

a limit: γ̂g
p→ γ∗g , where γ∗g is sometimes called the “pseudo-true value”. Similarly,

P(D = 1|X = x) is modeled parametrically as J(x;ψ) with ψ̂
p→ ψ∗. In obtaining γ̂g

and ψ̂ we would almost certainly use the Bernoulli log likelihood. In other words, we

estimate standard binary response models by MLE. (More precisely, by quasi-MLE

because we allow the binary response models to be misspecified.)

The weighted objective function for estimating θog – where Wig selects the units in

treatment group g – is

N−1

N∑
i=1

Wig

Fg(Xi; γ̂g)
J(Xi; ψ̂) · q(Yi, Xi; θg). (43)

Using standard convergence results – for example, Newey and McFadden (1994) and

Wooldridge (2010, Chapter 12) – (43) converges in probability to

E
[

Wg

Fg(X; γ∗g)
J(X;ψ∗) · q(Yg, X; θg)

]
.
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An argument very similar to Lemma 3.2 shows that

E
[

Wg

Fg(X; γ∗g)
J(X;ψ∗) · q(Yg, X; θg)

]
= E

{
pg(X)J(X;ψ∗)

Fg(X; γ∗g)
E[q(Yg, X; θg)|X]

}
. (44)

Now pg(X)J(X;ψ∗)/Fg(X; γ∗g) ≥ 0, so

pg(X)J(X;ψ∗)

Fg(X; γ∗g)
E[q(Yg, X; θog)|X] ≥ pg(X)J(X;ψ∗)

Fg(X; γ∗g)
E[q(Yg, X; θg)|X] (45)

for all X. By iterated expectations, θog is a solution to

max
θg∈Θg

E
[

Wg

Fg(X; γ∗g)
J(X;ψ∗) · q(Yg, X; θg)

]
(46)

and, provided the mean function is well specified and the distribution of X is suffi-

ciently rich, θog will be the unique solution. The conclusion is that, even if P(Wg =

1|X) and P(D = 1|X) are misspecified, we consistently estimate the parameters θog

in the correctly specified conditional mean,

E(Yg|X) = mg(X, θ
o
g). (47)

Because D is unconfounded conditional on X,

E(Yg|X,D) = E(Yg|X) (48)

and so

E(Yg|D = 1) = E[mg(X, θ
o
g)|D = 1]. (49)
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It follows that a consistent estimator of µg,1 = E(Yg|D = 1) is

µ̂g,1 = N−1
D

N∑
i=1

Di ·mg(Xi, θ̂g), (50)

where ND is the number of observations with Di = 1.

5.2 Part 2: The Propensity Score Is Correctly Specified

We are still interested in consistently estimating µg,1 = E(Yg|D = 1). Now we assume

that we have correctly specified parametric models for the propensity scores and

P(D = 1|X = x):

P(Wg = 1|X = x) = F (x, γog) (51)

P(D = 1|X = x) = J(x, ψo), (52)

and we still maintain unconfoundedness with respect to Yg. In some cases we will not

estimate P(D = 1|X = x). From Lemma 3.2 and the structure of the QLL in the

LEF – see (39) – we know that because

1

η
· E
[

Wg

F (X, γog)
J(X,ψo) · q(Yg, X; θg)

]
= E [q(Yg, X; θg)|D = 1] (53)

for all θg, the minimizer θ∗g of E [q(Yg, X; θg)|D = 1], which we assume is unique, is

also the minimizer of

E
[

Wg

F (X, γog)
J(X,ψo) · q(Yg, X; θg)

]
. (54)
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By the convergence arguments in Section 5.1, the solution θ̂g to (43) is consistent for

θ∗g . So it remains to be shown that, for estimating µg,1, having a consistent estimator

of θ∗g suffices.

In order to recover µg,1 from mg(X, θ
∗
g), we need to know some further properties

of the LEF family. As discussed in Wooldridge (2007), certain combinations of QLLs

and mean functions generate the important result

E(Yg|D = 1) = E[mg(X, θ
∗
g)|D = 1]. (55)

The key is that for a given LEF we choose the canonical link function to obtain the

conditional mean model. For the normal distribution, which leads to OLS as the

estimation method, the canonical link function leads to a mean linear in parameters.

It is well-known from linear regression analysis that, as long as an intercept is included

in the equation, the average of the fitted values is the same as the average of the

dependent variable. The population result also holds. Thus, if we use a linear model

mg(x, θg) = αg + xβg, then it is always true that

E(Yg|D = 1) = E(α∗g +Xβ∗g |D = 1). (56)

The same is true for the Bernoulli QLL when we use a logistic function for the mean:

mg(x, θg) = Λ(αg + xβg), (57)

which means that if Yg is binary or fractional, then we should use the Bernoulli

QMLE with a logistic mean function. A third useful case is when Yg ≥ 0, in which

case the QLL-mean pair that delivers double robustness is the Poisson QLL and an

exponential mean function: mg(x, θg) = exp(αg + xβg). These cases are discussed in
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more detail in Wooldridge (2007). See also Kaiser (2016) for an application of the

Poisson QMLE with an exponential mean function to decomposition problems. The

new twist here is that the claims hold for any population we choose to define via

D = 1, and because D can be a treatment indicator or an indicator based on X, we

have a single double robustness result for a broad class of average treatment effects.

In addition, D can be an indicator of being in a subpopulation formed after treatment

assignment, thereby allowing us to estimate treatment effects for groups that have

certain behavioral responses to treatment. This appears to be novel.

6 Summary Discussion and Wider Issues

In this paper we unify the current literature on doubly robust estimators by establish-

ing identification of a large class of average treatment effects under unconfoundedness.

We cover binary and multi-valued treatments as well as the average treatment effect,

the average treatment effect on the treated, and average treatment effects for other

subpopulations of interest (based on covariates). We also extend this initial result to

distribution, quantile, and inequality treatment effects, as well as to the local average

treatment effect in a setting with an instrumental variable. Further, we allow for

both unnormalized and normalized weighting, and cover standard inverse-probability

weighted (IPW) estimators as a special case.

Because doubly robust estimators involve models for both the conditional mean

and the propensity score, and require that at least one of these models is correctly

specified in order to remain consistent, we carefully describe each of these cases.

Similar to Wooldridge (2007), we consider estimation of the propensity score using

Bernoulli QMLE as well as estimation of the conditional mean using various QLLs

from the linear exponential family. More precisely, we consider three cases: OLS
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with a linear mean function; Bernoulli QMLE with a logistic mean function; and

Poisson QMLE with an exponential mean function. These nonlinear mean functions

have typically been ignored in recent work, even though they might provide a useful

alternative to a linear model for many outcome variables of interest.

Our contribution is essentially methodological, and we do not directly contribute

to the philosophical underpinnings of causal inference, or to the debate on the proper

way to define causality. Nevertheless, our setup applies to several of the causal frame-

works discussed in the recent issue of this journal in honor of Trygve Haavelmo’s

contributions to structural equations and causal inference. As was often the case

in econometrics, the early giants in the field had a coherent, deep understanding of

their area of research, and Haavelmo is a leading example. He understood that, when

economists specify, say, a supply and demand system, each has a hypothetical or coun-

terfactual interpretation, and identification is synonymous with making assumptions

about how observables are generated from the underlying economic equations. Over

the years there was slippage in the empirical application of simultaneous equations

models in that researchers applied them to settings where the underlying equations did

not satisfy Ragnar Frisch’s autonomy requirement, as discussed recently by Heckman

and Pinto (2015). See also the Econometric Theory interview with Arthur Goldberger

(Kiefer, 1989), who lamented that the progress made by Frisch, Haavelmo, and others

at the Cowles Commission had eroded.

The papers by Heckman and Pinto (2015) and Pearl (2015) explicitly use a coun-

terfactual setting of the type we use here. Pearl’s do-calculus is what our framework

captures in the counterfactual outcomes Yg for different treatment levels g. Had we

used a different notation, say Y (w), where Y (w) is the random outcome with, say, the

price or policy set at w, then studying changes in Y (w) as w changes is precisely the

purpose of Pearl’s do-calculus for changing w. Heckman and Pinto (2015, p. 118–119)
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provide a very clear discussion of Haavelmo’s hypothetical function in the context of

the linear model. While we do not consider continuous “treatment” variables W

in this paper, the idea of hypothetical or potential outcomes is paramount. Future

research could study extensions of our results in a setting that allows for multiple

“treatment” variables that can be continuous, discrete, or some mixture.

27



A Proofs

Proof of Lemma 3.2: The proof that

E
[
Wg

pg(X)
r(X)q(Yg, X)

]
= E [r(X)q(Yg, X)] (58)

is similar to Wooldridge (2007). However, Wooldridge assumes conditional indepen-

dence rather than the weaker conditional mean independence we use here. The current

proof is an implication of iterated expectations and unconfoundedness in mean:

E
[
Wg

pg(X)
r(X)q(Yg, X)

]
= E

{
E
[

Wg

pg(X)
r(X)q(Yg, X)

∣∣∣∣Wg, X

]}
= E

{
Wg

pg(X)
r(X)E [q(Yg, X)|Wg, X]

}
= E

{
Wg

pg(X)
r(X)E [q(Yg, X)|X]

}
≡ E

{
Wg

pg(X)
r(X)hg(X)

}
, (59)

where we use E [q(Yg, X)|Wg, X] = E [q(Yg, X)|X] ≡ hg(X). Now apply iterated

expectations again:

E
{

Wg

pg(X)
r(X)hg(X)

}
= E

{
E
[

Wg

pg(X)
r(X)hg(X)

∣∣∣∣X]}
= E

{
E
[
E (Wg|X)

pg(X)
|X
]
r(X)hg(X)

}
= E [r(X)hg(X)]

because E (Wg|X) = pg(X). Another application of iterated expectations gives the

result because

E [r(X)q(Yg, X)] = E {r(X)E [q(Yg, X)|X]} = E [r(X)hg(X)] .
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Next, we show that

E [r(X)q(Yg, X)] = E [D · q(Yg, X)] (60)

which again follows by iterated expectations and unconfoundedness in mean:

E [D · q(Yg, X)] = E {E [D · q(Yg, X)|D,X]}

= E {D · E [q(Yg, X)|Wg, X]}

= E [D · hg(X)]

= E [r(X)hg(X)] = E [D · q(Yg, X)] . (61)

Finally,

E [D · q(Yg, X)] = (1− η) · E [D · q(Yg, X)|D = 0] + η · E [D · q(Yg, X)|D = 1]

= η · E [q(Yg, X)|D = 1] . (62)

Combining the three pieces gives

E
[
Wg

pg(X)
r(X)q(Yg, X)

]
= η · E [q(Yg, X)|D = 1] , (63)

which completes the proof because η > 0 is assumed. �

29



B Implementation in Stata

We now discuss possible applications of our estimation methods in Stata, as well as

previous implementations of doubly robust estimators in this software package, such

as Emsley et al. (2008), Cattaneo et al. (2013), and the teffects aipw and teffects

ipwra commands in Stata 13.

In the first implementation that we are aware of, Emsley et al. (2008) introduced

a Stata command for the standard AIPW estimator of the ATE (dr). On the other

hand, Cattaneo et al. (2013) provided a Stata command (poparms) for estimating

treatment effects of multivalued treatments, including QTEs, but excluding, for ex-

ample, the ATT. The implemented (semiparametric) estimators are based on earlier

work of Cattaneo (2010), and hence both the conditional mean and the propensity

score are estimated using series estimators. When no polynomials are included in

these models, poparms will overlap with dr.

The standard AIPW estimator of the ATE is also implemented as teffects aipw

in Stata 13. Again, when no polynomials are included in poparms, it will overlap

with teffects aipw. Because our estimation methods are not AIPW, none of these

implementations will overlap with our approach. To the best of our knowledge, the

only exception is teffects ipwra in Stata 13 – which implements the estimation

methods of Wooldridge (2007) as well as some extensions of these methods which we

discuss in this paper. We provide further discussion in the following.

For simplicity, let us consider the case of a binary treatment. Let ovar and tvar

be the names of the outcome and treatment variables, respectively, and let xvars be

the list of names of control variables. We start with estimating the propensity scores.

. logit tvar xvars

. predict pscore
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When the mean function is linear, we can estimate the ATE in the following way:

. regress ovar xvars if tvar == 1 [pw = 1/pscore]

. predict ot

. regress ovar xvars if tvar == 0 [pw = 1/(1-pscore)]

. predict oc

. generate te = ot-oc

. summarize te

An identical estimate can be obtained by typing:

. teffects ipwra (ovar xvars) (tvar xvars)

When the mean function is logistic or exponential, we can replace regress in the

previous procedure with logit or poisson, respectively. We can also obtain the

same estimates by simply typing:

. teffects ipwra (ovar xvars, logit) (tvar xvars)

. teffects ipwra (ovar xvars, poisson) (tvar xvars)

Alternatively, with a linear mean function, we can estimate the ATT in the following

way:

. regress ovar xvars if tvar == 1

. predict ot

. regress ovar xvars if tvar == 0 [pw = pscore/(1-pscore)]

. predict oc

. generate te = ot-oc

. summarize te if tvar == 1

Again, an identical estimate can be obtained by typing:

. teffects ipwra (ovar xvars) (tvar xvars), atet

Extensions to logistic and exponential mean functions are analogous and straight-

forward. On the other hand, quantile and inequality treatment effects as well as
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various parameters in instrumental variable models cannot be readily estimated us-

ing teffects ipwra. A comprehensive implementation of estimators for all these

cases is beyond the scope of this paper, and we conclude this discussion with an

implementation of our estimation method for DTEs and QTEs.

Let y be the value of the outcome variable in which we are interested, that is, let

it be equal to y in τ1,dte(y). We can then estimate the DTE in the following way:

. generate oy = ovar<=y

. logit oy xvars if tvar == 1 [pw = 1/pscore]

. predict ot

. logit oy xvars if tvar == 0 [pw = 1/(1-pscore)]

. predict oc

. generate te = ot-oc

. summarize te

To obtain the QTE for a given quantile, it is sufficient to vary the value of y (y) and

estimate average values of Y1(y) (ot) and Y0(y) (oc) for each value. We can then

estimate QY1(t) or QY0(t) by finding the smallest y for which the estimated average

value of Y1(y) or Y0(y), respectively, is greater than or equal to t.

32



References

Abadie, A. (2002). Bootstrap tests for distributional treatment effects in instrumen-

tal variable models. Journal of the American Statistical Association 97, 284–292.

Abadie, A., Angrist, J. & Imbens, G. (2002). Instrumental variables estimates of

the effect of subsidized training on the quantiles of trainee earnings. Econometrica

70, 91–117.

Bang, H. & Robins, J. M. (2005). Doubly robust estimation in missing data and

causal inference models. Biometrics 61, 962–972.

Belloni, A., Chernozhukov, V., Fernández-Val, I. & Hansen, C. (2015).

Program evaluation with high-dimensional data. Unpublished.

Belloni, A., Chernozhukov, V. & Hansen, C. (2014). Inference on treatment

effects after selection among high-dimensional controls. Review of Economic Studies

81, 608–650.

Cao, W., Tsiatis, A. A. & Davidian, M. (2009). Improving efficiency and

robustness of the doubly robust estimator for a population mean with incomplete

data. Biometrika 96, 723–734.

Cassel, C. M., Särndal, C. E. & Wretman, J. H. (1976). Some results on

generalized difference estimation and generalized regression estimation for finite

populations. Biometrika 63, 615–620.

Cattaneo, M. D. (2010). Efficient semiparametric estimation of multi-valued treat-

ment effects under ignorability. Journal of Econometrics 155, 138–154.

33



Cattaneo, M. D., Drukker, D. M. & Holland, A. D. (2013). Estimation of

multivalued treatment effects under conditional independence. Stata Journal 13,

407–450.

Chernozhukov, V., Fernández-Val, I. & Melly, B. (2013). Inference on

counterfactual distributions. Econometrica 81, 2205–2268.

Donald, S. G. & Hsu, Y.-C. (2014). Estimation and inference for distribution

functions and quantile functions in treatment effect models. Journal of Economet-

rics 178, 383–397.

Emsley, R., Lunt, M., Pickles, A. & Dunn, G. (2008). Implementing double-

robust estimators of causal effects. Stata Journal 8, 334–353.

Farrell, M. H. (2015). Robust inference on average treatment effects with possibly

more covariates than observations. Journal of Econometrics 189, 1–23.

Firpo, S. & Pinto, C. (2016). Identification and estimation of distributional

impacts of interventions using changes in inequality measures. Journal of Applied

Econometrics 31, 457–486.

Foresi, S. & Peracchi, F. (1995). The conditional distribution of excess returns:

An empirical analysis. Journal of the American Statistical Association 90, 451–466.
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